Reprint

ISSN 1991-3036 (Web Version)

International Journal of Sustainable Crop Production (IJSCP)

(Int. J. Sustain. Crop Prod.)

Volume: 18

Issue: 1

February 2023

Int. J. Sustain. Crop Prod. 18(1): 19-23 (February 2023)

EFFECT OF HIGH TEMPERATURE AT DIFFERENT GROWTH STAGES ON PHOTOSYNTHESIS, CHLOROPHYLL STABILITY, GRAIN GROWTH AND YIELD OF AMAN RICE VARIETIES

T. AKTER, M.T. ISLAM, M.A. BATEN AND M.S. RANA

EFFECT OF HIGH TEMPERATURE AT DIFFERENT GROWTH STAGES ON PHOTOSYNTHESIS, CHLOROPHYLL STABILITY, GRAIN GROWTH AND YIELD OF AMAN RICE VARIETIES

T. AKTER¹, M.T. ISLAM², M.A. BATEN³ AND M.S. RANA¹

¹Former MS student, Department of Environmental Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; ²Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh-2202, Bangladesh; ³Professor, Department of Environmental Sciences, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.

Accepted for publication on 10 January 2023

ABSTRACT

Akter T, Islam MT, Baten MA, Rana MS (2023) Effect of high temperature at different growth stages on photosynthesis, chlorophyll stability, grain growth and yield of aman rice varieties. *Int. J. Sustain. Crop Prod.* 18(1), 19-23.

Changing climate rises air temperature due to increasing concentration of CO2 and other atmospheric greenhouse gases. A pot experiment was conducted with five rice varieties viz., Binadhan-4, Binadhan-7, Binadhan-11, Binadhan-12 and Binasail in the plant growth chamber at Bangladesh Institute of Nuclear Agriculture, Mymensingh to assess the effects of high temperature (36°C) at different growth stages on photosynthesis, chlorophyll stability, grain growth and yield and to find out the variety tolerant to high temperature. Five temperature treatments viz., Ambient, 36°C at tillering stage, 36°C at panicle initiation stage, 36°C at booting stage, and 36°C at flowering stage were imposed for seven days at each respective growth stage and then plants were allowed to grow at ambient temperature up to maturity. For grain growth studies two temperature treatments, Ambient and 30°C were applied from fertilization to grain maturity. Ten grains were harvested from selected panicles of three plants of each treatment at 3 days interval starting from fertilization to maturity. During grain growth photosynthetic rate, chlorophyll content of flag leaf and dry weights of those grains were recorded. Photosynthetic rate, chlorophyll content of flag leaf, grain dry matter accumulation, plant height, number of total tillers and effective tillers plant¹, panicle length, filled and unfilled grains panicle⁻¹, panicle length, 1000-grain weight and grain yield were significantly affected by temperature treatments. However, high temperature (36°C) at flowering stage affected grain yield more compared to other temperature treatments and found to be more sensitive. Grain dry matter accumulation gradually increased but photosynthetic rate in flag leaf decreased from fertilization to maturity. The rice varieties achieved physiological maturity at 24 days and chlorophyll content in flag leaves was stable up to 16 days after anthesis. The highest photosynthetic rate, grain dry matter accumulation and grain yield were found in Binadhan-7 under the treatments. So, Binadhan-7 seems to be tolerant to high temperature compared to other varieties.

Key words: rice, high temperature, growth stage, photosynthesis, chlorophyll, grain growth, yield

INTRODUCTION

Temperature is one of the most important environmental factors influencing crop growth, development and yield processes. Temperature is becoming the major concern for plant scientists worldwide due to the changing climate. The rise in atmospheric temperature causes detrimental effects on growth, yield, and quality of the crop varieties by affecting their phenology, physiology, and yield components (Rawson 1992; Kumar 2020; Moonmoon et al. 2022a; Islam 2022). Climate model predicts 33% rice yield decrease in 2100 (Karim et al. 2012). The economic yield of a plant depends mainly on leaf photosynthesis. Stomata can function as valves to control the balance of water loss and carbon gain in plants (Huang et al. 2021). The climate changes that are currently occurring make it necessary to understand the effects of temperature on photosynthesis. Models based on large-scale observations indicate that, in the absence of agronomic adaptation, the decrease in crop yields can reach 17% for each 1°C increase in the temperature of the growing season (Yamori et al. 2014). Boro rice is transplanted in January February and usually faces high temperature (36-39°C) at its reproductive stage in April-May (Islam 2021a). Flowering stage of rice is very important for high temperature (Islam 2011 and Islam 2013). High temperature may cause drying of pollen and stigma and ceasing pollen tube development unsuitable for fertilization. As a result, unfilled grains are produced. High soil moisture can reduce high temperature effect of boro rice at flowering stage (Islam 2021a; Islam 2021b; Islam 2022). In Bangladesh, Boro rice often suffers with high temperature during its reproductive stages in April-May and Aman rice occasionally in September-October. Aman rice is rain fed cultivated during June-December. It passes through vegetative stage during August to September when rainfall is usually sufficient. The crop suffers from moisture stress when the rainfall usually ceases by the first week of October in Bangladesh. By this time, it passes through reproductive. The total rainfall in September-October is very irregular and often inadequate which fails to meet the evapotranspirational demand of Aman rice consequently develops water stress and affects translocation of assimilates and grain development in rice (Rahman et al. 2002; Moonmoon et al. 2020c). Rice grain dry weight increased from fertilization to 18-24 days and temperature/water stress decreased the rate of accumulation and finally produced decreased grain weight (Islam and Gretzmacher, 2001; Islam 2010; Hafiz et al. 2015; Hazra et al. 2016; Moonmoon et al. 2020a). The yield of rice is an integrated result of various processes including canopy photosynthesis, conversion of assimilates to biomass, and partitioning of assimilates to grains (Jeng et al. 2006).

²Corresponding author & address: Dr. Md. Tariqul Islam, E-mail: islamtariqul05@yahoo.com Tanjina Akter, Md. Tariqul Islam, Md. Abdul Baten and Md. Sohel Rana Drought stress affects plant growth and development, and ultimately reduces grain yield of rice (Islam *et al.* 1994b; Islam *et al.* 2005a; Zohora *et al.* 2016; Moonmoon *et al.* 2017; Moonmoon *et al.* 2020b; Moonmoon *et al.* 2022b). Response of rice yield to drought varies with growth stage being most sensitive at booting followed by flowering and or grain filling stage (Islam *et al.* 1994a). The early reproductive growth period, encompassing tetrad-formation stage of miosis (i.e., about 10-15 d prior to heading), was found to be the most sensitive and critical to water deficit resulting in up to 59% grain sterility that caused similar magnitude of yield reduction (Singh *et al.* 2010). As the grain formation progressed further, the early period of grain-filling was found to be more vulnerable to water stress than the late-milk stages (Singh *et al.* 2010). For stress condition, reproductive stages are critical than vegetative stages and booting to early grain filling stages are more critical (Rahman *et al.* 2002; Islam *et al.* 2005b; Moonmoon and Islam, 2017). So, objectives of the study were to assess the effects of high temperature at different growth stages on photosynthesis, grain growth and yield of rice varieties and to find out the variety tolerant to high temperature.

MATERIALS AND METHODS

A pot experiment was conducted with the varieties Binadhan-4, Binadhan-7, Bimadhan-11, Binadhan-12 and Binasail in a plant growth chamber at Bangladesh Institute of Nuclear Agriculture (BINA) during June to December, 2014. The following five treatments viz., T_0 (ambient temperature), T_1 (36°C at tillering stage), T_2 $(36^{\circ}C \text{ at panicle initiation stage})$, $T_3(36^{\circ}C \text{ at booting stage})$, and $T_4(36^{\circ}C \text{ at flowering stage})$ were applied for seven days at each respective growth stage and then plants were allowed to grow at ambient temperature up to maturity. The soil for the experiment was collected from BINA campus. The soil was silt loam, organic matter 1.05%, total N 0.07%, available P 14.3 ppm, exchangeable K 0.25 meq. per 100g soil, available S 13.2 and soil pH 6.67. The experiment was laid out on Completely Randomized Design, where each treatment was replicated 3 times. Seedlings were uprooted carefully from the seedbed and bundled with proper care. On 17 July, 2014, 30 days old seedlings were transplanted in the puddle pots. One seedling was transplanted in a pot. Soils were fertilized with urea 1.72 g pot⁻¹, TSP 1.06 g pot⁻¹, MP 0.215 kg ha⁻¹, 0.80 g pot⁻¹ corresponding to urea 215 kg ha^{-1} TSP 180 kg ha^{-1} , MP 100 kg ha^{-1} , respectively. For grain growth studies two temperature treatments, T_0 (control) and 30°C were applied from fertilization to grain maturity. Ten grains were harvested from selected panicles of three plants of each treatment at 3 days interval starting from fertilization to maturity. Dry weights of those grains were recorded. Photosynthetic rate were measured using Portable Photosynthetic system (Model: Li-6400XT) and chlorophyll content of flag leaves were measured using SPAD meter (Model: SPAD 502). Grain dry weight grain dry matter accumulation), chlorophyll content (SPAD reading) and photosynthetic rate of flag leaves were measured at 3 days internal from fertilization to maturity. At maturity, three pots were harvested for each treatment. After harvest data were recorded on plant height, number of total and effective tillers plant⁻¹, panicle length, number of filled and unfilled grains panicle⁻¹ and grain yield plant⁻¹. The collected data were analyzed statistically following two factor experimental design of CRD by MSTAT computer packages. Duncan's Multiple Range Test was done to compare the means.

RESULTS AND DISCUSSION

Temperature treatments significantly affected all the parameters (Table 1). However, high temperature (36°C) at flowering stage had more detrimental effect on yield and yield attributes compared to other temperature treatments. Rice varieties significantly varied on all the parameters (Table 1). Binadhan-4 produced the longest plants and panicles, highest number of unfilled grains plant⁻¹, lowest 1000-grain weight and grain yield. Binadhan-7 showed the lowest number of total and effective tillers but the highest 1000-grain weight and grain yield. Binadhan-11 and Binadhan-12 produced shorter plants with medium yield. Binasail had the highest number of filled grains plant⁻¹, the lowest 1000-grain weight and lower yield. Interaction of temperature treatments and varieties was significant on plant height, number of effective tillers, filled and unfilled grains and grain yield plant⁻¹ (Table 2). Interaction effect was not significant on total tiller plant⁻¹, panicle length. The highest plant height was found on Binadhan-4 at ambient temperature and the lowest plant height was found in Binadhan-11(36°C at booting stage). The highest number of tiller was found at T_4 treatment, 36°C at flowering stage (12.33) and the lowest number of tillers plant⁻¹ at T_3 treatment, 36°C at booting stage (12). The highest number of tiller was found at T₀ treatment, at ambient temperature. The lowest tiller was produced at T₃ treatment, $36^{\circ}C$ at booting stage (8.92). The longest panicles were observed at T_0V_1 . The shortest panicle was observed at V₄T₂. The highest number of filled grains plant⁻¹was observed in V₅T₅ interaction (105.3). The lowest number of filled grains plant⁻¹ was observed in V_1T_3 interaction (42). Here Binadhan-7 possessed the highest number of unfilled grain per panicle under T₂(36°C at PI stage). The lowest number of unfilled grains possessed by Binadhan-12. The maximum 1000-grain weight (31 g) was observed in V_2T_0 that was statistically similar with T_4V_2 (30.27 g). On the other hand, the minimum 1000-grain weight (14 g) was recorded in V_5T_4 . The highest yield plant⁻¹(19) was observed in T_0V4 . On the other hand, the minimum (7) yield plant⁻¹ was observed in T_4V_5 . High temperature at flowering stage decreased grain yield more compared to other temperature treatments. So flowering stage was more critical for high temperature stress. The highest values of grain dry weight and photosynthetic rate were found in Binadhan-7. Among the varieties Binadhan-7 produced the highest grain yield under the temperature treatments and it showed tolerance to other rice varieties. Grain dry matter accumulation gradually increased but photosynthetic rate in flag leaf decreased from fertilization to maturity. The rice varieties achieved physiological maturity at 24 days and chlorophyll content in flag leaves was stable up to 16 days after anthesis. The highest photosynthetic rate, grain dry matter accumulation and grain yield were found in Binadhan-7 under the treatments. So, Binadhan-7 seems to be tolerant to high temperature compared to other varieties. The results agree with Islam 2013; Islam and Arefin, 2022.

Table 1. Yield and yield attributes of Aman rice under high temperature (36°C) at tillering, panicle initiation, booting and flowering stages

Treatments	Plant height (cm)	Total tillers plant ⁻¹ (no.)	Effective tillers plant ⁻¹ (no.)	Panicle length (cm)	Filled grains plant ⁻¹ (no.)	Unfilled grains plant ⁻¹ (no.)	1000- grain wt. (g)	Grain yield plant ⁻¹ (g)
Varieties								
Binadhan-4 (V_1)	149a	12b	9.6b	25a	486c	180a	18d	9d
Binadhan-7 (V_2)	128b	10d	7.8d	23c	482c	167b	30a	14a
Binadhan-11 (V ₃)	82e	13a	10a	24b	543b	157b	24c	13b
Binadhan-12 (V ₄)	87d	12ab	8.9bc	22d	482c	92c	27b	13b
Binasail (V ₅)	92c	11c	8.5cd	21.9d	695a	90c	14e	10c
Temperature								
Control (T ₀)	112a	12b	10a	24a	700a	87c	24a	15a
36^{0} C at tillering stage (T ₁)	106bc	11c	8c	24a	607b	119b	23b	13b
36^{0} C at PI stage (T ₂)	105c	11bc	8c	21c	507c	177a	23b	11c
36^{0} C at booting stage (T ₃)	107bc	12b	8bc	23b	455d	129b	23b	10d
$36^{\circ}C$ at flowering stage (T ₄)	109b	12a	9b	23b	419e	173a	23b	9e

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT.

Table 2. Interaction effects of temperature and varie	ty
---	----

Treatments	Plant height (cm)	Total tillers plant ⁻¹ (no.)	Effective tillers plant ⁻¹ (no.)	Panicle length (cm)	Filled grains plant ⁻¹ (no.)	Unfilled grains plant ⁻¹ (no.)	1000- grain wt. (g)	Grain yield plant ⁻¹ (g)
V ₁ T ₀	156a	12	11.6a	26	706cd	121efg	19f	13 e
$\mathbf{V}_1 \mathbf{T}_1$	142b	11	8.3e-h	25	484ijk	196b	18f	9 i
$V_1 T_2$	146bc	12	10a-d	23	4251mn	222a	18f	7 j
$V_1 T_3$	150ab	13	9c-g	25	4261mn	165c	18f	7 j
$V_1 T_4$	153ab	13	9b-f	25	390n	197b	18f	7 j
$V_2 T_0$	133d	11	9а-е	25	577f	136de	31a	17 ab
$V_2 T_1$	126de	9	6.3h	24	528f-i	162c	30a	16 bc
$V_2 T_2$	130de	10	7gh	21	468jkl	228a	30a	13gh
$V_2 T_3$	127de	11	8e-h	24	439klm	117efg	30a	14fg
$V_2 T_4$	124e	11	8e-h	24	397n	192b	31a	12hi
$V_3 T_0$	89fgh	12	11abc	24	688cde	103ghi	24e	17bc
$V_3 T_1$	82hi	12	10a-e	25	658de	109fgh	23e	14ef
$V_3 T_2$	76i	12	9b-f	24	500hij	215ab	24e	12ij
$V_3 T_3$	76i	13	11ab	23	455jkl	149cd	24e	11jk
$V_3 T_4$	90fgh	14	11a	24	417lmn	209ab	24e	9m
$V_4 T_0$	87gh	12	9.6a-e	22	638e	41j	28b	19a
$V_4 T_1$	92fg	12	9.6a-e	23	555fg	82i	27bc	15de
$V_4 T_2$	83hi	13	8.6d-h	19	4241mn	115efg	27cd	11ij
$V_4 T_3$	87gh	12	7.3fgh	22	406mn	89hi	27d	11jkl
$V_4 T_4$	87gh	13	9.3b-f	22	389n	131def	26d	10klm
$V_5 T_0$	97f	12	11.6a	22	892a	36j	14g	13gh
$V_5 T_1$	90fgh	11	8.3d-h	22	810b	46j	14g	11j
$V_5 T_2$	92fg	11	7gh	19	719c	108fgh	14g	10lm
V ₅ T ₃	93fg	11	7.3fgh	23	550fgh	125efg	14g	8n
$V_5 T_4$	90fgh	11	8.3d-h	22	505hij	136de	14g	7n

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT.

Where, V_1 = Binadhan-4, V_2 = Binadhan-7, V_3 = Binadhan-11, V_4 = Binadhan-12, V_5 = Binasail, T_0 = Control or ambient temperature, T_1 = 36°C attillering stage, T_2 = 36°C at panicle initiation stage, T_3 = 36°C at booting stage, T_4 = 36°C at flowering stage

Akter et al.

00 01	0 11			
Treatments	Grain dry wt. grain ⁻¹ (mg)	SPAD reading (chlorophyll)	Photosynthetic rate $(\mu molCO_{2m}-{}^{2}s-{}^{1})$	
Control	16a	38a	21a	
Temperature stress (30°C)	15b	35b	14b	
Varieties				
Binadhan-4	17b	39a	19b	
Binadhan-7	20a	37b	22a	
Binadhan-11	15d	36b	16d	
Binadhan-12	16c	37b	16c	
Binasail	8e	33c	15e	
Days after anthesis				
0	2g	38a	22a	
4	4f	38ab	20b	
8	11e	37abc	19c	
12	17d	37abc	18d	
16	19c	36abc	17e	
20	21b	35bc	16f	
24	24a	35c	15g	
28	23a	35c	15h	

Table 3. Effect of temperature on grain dry weight, photosynthetic rate, and chlorophyll content of flag leaf during grain filling period of Aman rice genotypes

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

CONCLUSION

Photosynthetic rate, chlorophyll content of flag leaf, grain dry matter accumulation, Plant height, number of total tillers and effective tillers plant⁻¹, panicle length, filled and unfilled grains panicle⁻¹, panicle length, 1000grain weight and grain yield were significantly affected by temperature treatments. However, high temperature (36°C) at flowering stage affected grain yield more compared to other temperature treatments and found to be more sensitive. Grain dry matter accumulation gradually increased but photosynthetic rate in flag leaf decreased from fertilization to maturity. The rice varieties achieved physiological maturity at 24 days and chlorophyll content in flag leaves was stable up to 16 days after anthesis. The highest photosynthetic rate, grain dry matter accumulation and grain yield were found in Binadhan-7 under the treatments. So, Binadhan-7 seems to be tolerant to high temperature compared to other varieties.

REFERENCES

Hafiz MA, Islam MT, Karim MA (2015) Grain growth and yield performance of aromatic rice genotypes under different soil moisture regimes. *Int. J. Sustain. Crop Prod.* 10(2), 44-47.

Hazra P, Islam MT, Das GC (2016) Effect of high temperature on some physiological parameters of grain growth and yield of boro rice varieties. *J. Biosci. Agric. Res.* 7(1), 600–607.

Huang G, Yang Y, Zhu L, Peng S, Li Y (2021) Temperature responses of photosynthesis and stomatal conductance in rice and wheat plants. https://doi.org/10.1016/j.agrformet.2021.108322

Islam MT (2010) Photosynthesis, conductance, transpiration, water use efficiency and grain growth of high yielding rice varieties under water stress. *Int. J. Expt. Agric.* 1(2), 1-4.

Islam MT (2011) Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. *Int. J. Sustain Crop Prod.*, 6(1), 14-16.

Islam MT (2013) Photosynthesis, chlorophyll stability and grain growth of aromatic rice genotypes under high temperature. *Bangladesh J. Nuclear Agric.*, 27-28:9-14.

Islam MT (2021a) Water stress tolerance in hybrid rice. Intl. J. Sustain. Crop Prod., 16(2), 1-3.

Islam MT (2021b) High soil moisture at flowering stage of boro rice varieties reduces high temperature effect. *Int. J. Expt. Agric.* 11(2), 11-14.

Islam MT (2022) Effect of high temperature on photosynthesis, stomatal conductance, transpiration and yield of boro rice varieties under different soil moisture regimes. *Bangladesh J. Nuclear Agric.* 36((1), 65-72.

Islam MT, Arefin KS (2022) Photosynthesis, chlorophyll flouroscence, stomatal conductance, transpiration, water use efficiency and yield of aman rice genotypes under high temperature at different growth stages. *Int. J. Sustain. Crop Prod.* 17(1), 22-26.

Islam MT, Gretzmacher R (2001) Grain growth pattern and yield performance of some transplanted aman rice cultivars in relation to moisture stress. *Bangladesh J. Nuclear Agric*. 16&17: 21-28.

Islam MT, Hossain MA, Islam MT (2005a) Effect of soil moisture on morpho-physiological and yield attributes of boro rice genotypes. J. Bangladesh Soc. Agric. Sci. Technol., 2(3&4), 81-84.

Islam MT, Islam MT, Salam MA (1994b) Growth and yield performance of some rice genotypes under different soil moisture regimes. *Bangladesh J. Train. Devt.*, 7(2), 57-62.

Islam MT, Khan MEH, Islam MT (2005b) Grain growth pattern and yield attributes of boro rice genotypes under soil moisture stress. *J. Bangladesh Soc. Agric. Sci. Technol.*, 2 (3&4), 25-28.

Islam MT, Salam MA, Kauser M (1994a) Effect of water stress at different growth stages of rice on yield components and yield. *Progress. Agric.*, 5(2), 151-156.

Jeng TL, Tseng TH, Wang CS, Chen CL, Sung JM (2006) Yield and grain uniformity in contrasting rice genotypes suitable for different growth environments. *Field Crops Res.*, 99: 59-66.

Karim MR, Ishikawa M, Ikeda M, Islam MT (2012) Climate change model predicts 33% rice yield decrease in 2100 in Bangladesh. *Agron. Sustain.* Dev., DOI 10.1007/s13593-012-0096-7

Kumar S (2020) Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. *Int. J. Sci. Food Agric.* 4(4), 367-378.

Moonmoon S, Fakir MSA, Islam MT (2017) Effect of drought stress on grain dry weight, photosynthesis and chlorophyll in six rice genotypes. *Sch J Agric Vet Sci.*, 4(1), 13-17.

Moonmoon S, Fakir MSA, Islam MT (2020a) Assimilation of grain on yield and yield attributes of rice (*Oryza sativa* L.) genotypes under drought stress. *Fourrages*. 241(3), 85-98.

Moonmoon S, Fakir MSA, Islam MT (2020b) Effect of drought on morphology and dry matter partitioning at panicle stage in rice genotypes. Fourrages. 242(6), 19-30.

Moonmoon S, Fakir MSA, Islam MT (2020c) Modulation of morpho-physiology in rice at early tillering stage under drought stress. Role of photosynthates. *Fourrages*. 242(4), 19-37.

Moonmoon S, Fakir MSA, Islam MT (2022a) Effect of drought on physiological traits at reproductive stage in six rice genotypes (*Oryza sativa* L.). *Res. J. Bot.* 17(1), 11-17.

Moonmoon S, Islam MT (2017) Effect of drought stress at different growth stages on yield and yield components of six rice (*Oryza sativa* L.) genotypes. *Fundam Appl Agric.*, 2(3), 285-289.

Moonmoon S, Fakir MSA, Islam MT (2022b) Biochemical traits at reproductive stages in six rice genotypes under drought stress. *Biotechnol*. 21(1), 15-21.

Rahman MT, Islam MO (2002) Effect of water stress at different growth stages on yield and yield contributing characters of transplanted aman rice. *Pakistan J. Biol. Sci.*, 5(2), 169-172.

Rawson HM (1992) Plant responses to temperature under conditions of elevated CO₂. Aust J. Bot. 40: 473-490.

Singh S, Singh TN, Chauhan JS (2010) Productivity of hybrid rice. 1. Vernubility to water stress of reproductive development and inhibition of RuBisCO enzyme in upper leaves as major constraints to yield. *J. New Seeds*. 11(4), 328-355.

Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. *Photosynthesis Res.* 119: 101-117.

Zohora FT, Islam MT, Baten MA (2016) Drought tolerance of NERICA rice mutants. Int. J. Sustain. Crop Prod., 11(11), 4-8.