International Journal of Experimental Agriculture

(Int. J. Expt. Agric.)

Int. J. Expt. Agric. 4(1):7-10(January 2014)
EFFECT OF SPACING AND NUMBER OF SEEDLINGS HILL ${ }^{-1}$ ON THE YIELD OF BRRI dhan 29
N. AKTER M.S.U. BHUIYA, M.A. SALAM, M.S. ISLAM AND H. KATO-NOGUCHI

An International Scientific Research Publisher Green Global Foundationo

Web address: http://ggfiournals.com/e-journals archive
E-mails: editor@ggfjournals.com and editor.int.correspondence@ggfjournals.com

EFFECT OF SPACING AND NUMBER OF SEEDLINGS HILL ${ }^{-1}$ ON THE YIELD OF BRRI dhan 29

N. AKTER ${ }^{1}$ M.S.U. BHUIYA ${ }^{1}$, M.A. SALAM ${ }^{1}$, M.S. ISLAM ${ }^{1}$ AND H. KATO-NOGUCHI ${ }^{2}$

${ }^{1}$ Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh; ${ }^{2}$ Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.

Corresponding author \& address: Md. Shafiqul Islam, E-mail: shafiqagron@bau.edu.bd Accepted for publication on 7 December 2013

Abstract

Akter N, Bhuiya MSU, Salam MA, Islam MS, Kato-Noguchi H (2014) Effect of spacing and number of seedlings hill ${ }^{-1}$ on the yield of brri dhan29. Int. J. Expt. Agric. 4(1), 7-10.

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh from November 2011 to July 2012 to study the effect of spacing and number of seedlings hill ${ }^{-1}$ on the yield of BRRI dhan29. Three spacings viz. $20 \mathrm{~cm} \times 15 \mathrm{~cm}, 20 \mathrm{~cm} \times 20 \mathrm{~cm}, 20 \mathrm{~cm} \times 25 \mathrm{~cm}$ and three numbers of seedlings hill ${ }^{-1}$ viz. 2, 3 and 4 seedlings hill ${ }^{-1}$ were included as experimental treatment. The experiment was carried out in a randomized complete block design with four replications. The effect of spacing showed significant variation in respect of plant height, total tillers hill ${ }^{-1}$, number of effective tillers hill ${ }^{-1}$, number of non-effective tillers hill ${ }^{-1}$, panicle length, grains panicle ${ }^{-1}$, sterile spikelets panicle ${ }^{-1}$, grain yield, straw yield, biological yield and harvest index. The highest plant height $(97.69 \mathrm{~cm})$, the number of total tillers hill ${ }^{-1}$ (17.45), effective tillers hill ${ }^{-1}$ (13.41) and grains panicle ${ }^{-1}$ (158.15) were found with $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing. The highest panicle length (23.94 cm) was obtained from $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing. The highest grain yield of $5.02 \mathrm{t} \mathrm{ha}^{-1}$ was also obtained from the spacing $20 \mathrm{~cm} \times 25 \mathrm{~cm}$. Number of seedlings hill ${ }^{-1}$ showed significant effect on all the parameters except 1000 -grain weight. The highest grain yield of 5.03 t ha ${ }^{-1}$ was obtained from 4 seedlings hill ${ }^{-1}$ while the lowest grain yield of $3.43 \mathrm{t} \mathrm{ha}^{-1}$ was found from 2 seedlings hill ${ }^{-1}$. The highest grain yield of $5.61 \mathrm{t} \mathrm{ha}^{-1}$ was obtained from interaction between $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing with 4 seedlings hill ${ }^{-1}$ while the lowest grain yield of $2.51 \mathrm{t} \mathrm{ha}^{-1}$ were found from the interaction between $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing with 2 seedlings hill ${ }^{-1}$. Results of the present study reveals that $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing with 4 seedlings hill ${ }^{-1}$ was found to be the best for obtaining maximum grain yield of BRRI dhan29.

Key words: spacing, number of seedlings hill $^{-1}$, BRRI dhan29

INTRODUCTION

Rice (Oryza sativa L.) is the staple food for nearly half of the world's population. It is cultivated both in the tropical and sub-tropical regions extending from $45^{\circ} \mathrm{N}$ to $40^{\circ} \mathrm{S}$ latitude. Rice is extensively grown in Bangladesh in three seasons namely, Aus, Aman and Boro, which covers 80% of the total cultivable area of the country (AIS 2011). Rice is the major food crop of the people of Bangladesh. It constitutes 95% of the cereals consumed and supplies 68% of the calorie and 54% of the protein in the diet of the people of Bangladesh. In Bangladesh, about 77% of total cultivable land is used for rice cultivation. Among the growing countries, Bangladesh occupies fourth position in rice production (BRRI 2000). The soil and climates are favorable for rice cultivation and it is extensively cultivated throughout the year. The total area, production and average yield of rice in Bangladesh are 11.53 million hectares, 33.7 million tons and $2.92 \mathrm{t} \mathrm{ha}^{-1}$, respectively (BBS 2012). Besides these the annual production of Aus, Aman and Boro rice were 2.30, 12.7 and 18.7 million t ha ${ }^{-1}$, respectively and Boro rice shares about 49% of the total rice production (BBS 2012).
The growth, development, yield and yield components of rice are greatly influenced by plant spacing. Optimum plant spacing ensures plant to grow properly utilizing more solar radiation and nutrients. When the planting densities exceed optimum level, competition among plants for light and nutrients become severe. Consequently, the growth slows down and the grain yield decreases. Wider spacing can produce more tillers when soil, water and nutrients are sufficiently available that produced higher yield. Again in wider spacing low yield would result due to low plant population (Uddin 1989).
The number of tillers and their growth is greatly affected both qualitatively and quantitatively by number of seedlings hill ${ }^{-1}$. Optimum number of seedlings hill ${ }^{-1}$ may enable the plant to grow properly both in its aerial and underground parts by utilizing maximum radiant energy, nutrient, space and water and also could reduce seedlings cost of farmers. Excessive numbers of seedlings hill ${ }^{-1}$ may produce higher number of tiller hill ${ }^{-1}$ resulting mutual shading and lodging and thus favours the production of more straw instead of grain. Chowdhury et al. (1993) reported that number of seedlings hill ${ }^{-1}$ was an important factor as it influenced the plant population unit ${ }^{-1}$ area, availability of sunlight, competition for nutrients, photosynthesis and respiration which ultimately influenced the yield contributing characters of rice. So, the study was undertaken to determine the effect of spacing and number of seedlings hill ${ }^{-1}$ on the yield of BRRI dhan29.

MATERIALS AND METHODS

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh from November 2011 to July 2012 to study the effect of spacing and number of seedlings hill-1 on the yield of BRRI dhan29. The soil of the experimental land belongs to the Sonatala series of dark grey flood plain soil type under AEZ9. The land was medium high silty loam soil having pH 6.5 . The climate of the experimental location was sub-tropical which was characterized by high temperature, high humidity and heavy precipitation during the month from April to October and scanty precipitation associated with moderately low
temperature during the period of October to March. The experiment included two treatment(A)three spacings viz. $20 \mathrm{~cm} \times 15 \mathrm{~cm}, 20 \mathrm{~cm} \times 20 \mathrm{~cm}, 20 \mathrm{~cm} \times 25 \mathrm{~cm}$ and (B) three number of seedlings hill-1 viz. 2, 3 and 4 seedlings hill-1. The experiment was laid out in a randomized complete block design with four replications. Healthy and vigorous seeds of BRRI dhan29 were collected from the Agronomy Field Laboratory, BAU, Mymensingh. Nursery bed was prepared by puddling the soil with country plough, cleaned and levelled with ladder on 10 December 2011. Finally, the sprouted seeds were sown by broadcasting in the wet nursery bed on 10 December, 2011. Experimental land was first opened with a tractor drawn disc plough. The land was then puddled thoroughly by ploughing and cross ploughing with a country plough and subsequently leveled by laddering. Immediately after final field preparation, the field layout was made on 29 January 2012 as per the design. Individual plots were cleaned by removing weeds and stubble and finally levelled by ladder. The experimental area was fertilized with $130-60-96-72-12$ g plot-1 of urea, triple super phosphate, muriate of potash (MoP), gypsum and zinc oxide, respectively. The entire amount of triple super phosphate, muriate of potash and gypsum and zinc oxide were broadcast and incorporated into the soil at final land preparation, one-third of urea was applied at the time of final land preparation. One-third amount of urea was applied as first top dressing at 20 DAT and the rest one-third was applied at second top dressing at 45 DAT. Seedlings were transplanted in the main field as per experimental treatments at the rate of 2,3 and 4 seedlings hill- 1 with 20 cm spacing between hills and 15,20 and 25 spacing between lines in respective treatment on 31 January 2012. Crop management practices such as drainage, plant protection measures were done as per requirement and two hand weeding were done in order to keep the crop weed free at 20 and 45 DAT. Individual plots were harvested at maturity on 27 May 2012. Five hills were selected each unit plot excluding central $5.0 \mathrm{~m}^{2}$ and boarder rows to record the data on yield contributing characters. The harvested crop of each plot ($5 \mathrm{~m}^{2}$ central area) was separately bundled; properly tagged and then brought to the threshing floor. The harvested crops were threshed by pedal thresher. The grains were cleaned and sun dried and adjusted to 14% moisture content. Straw were sun dried to record the straw yield. Grain yield and straw yield were then converted to t ha^{-1}. Collected data were analyzed statistically using MSTAT-C programme and the means were compared by Duncan's Multiple Range Test(Gomez and Gomez, 1984).

RESULTS AND DISCUSSION

Effect of spacing

Plant height, number of total tillers hill ${ }^{-1}$, number of effective tillers hill ${ }^{-1}$, number of non-effective tillers hill ${ }^{-1}$, panicle length, number of grains panicle ${ }^{-1}$, number of sterile spikelet's panicle ${ }^{-1}$, grain yield, straw yield, biological yield and harvest index were significantly influenced by plant spacing. (Table1). The highest number of effective tillers hill ${ }^{-1}$ (13.41) was obtained from $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing and the lowest one (10.38) from the spacing of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$. The result revealed that $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing had the greatest opportunity to produce more number of effective tillers hill ${ }^{-1}$. It might be due to the fact that the spacing $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ provided enough nutrients, light and air which played vital role in producing more effective tillers hill ${ }^{-1}$. The results are in agreement with the findings of Muhammad et al. (1987) and Haque (2002). The highest grain yield ($5.02 \mathrm{t} \mathrm{ha}^{-1}$) was obtained from $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing, which was similar to $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing and the lowest one (3.65 $t \mathrm{ha}^{-1}$) was obtained from the spacing of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$. The highest number of effective tiller m^{-2} and the highest number of grains panicle ${ }^{-1}$ were mainly responsible for this highest grain yield.

Effect of number of seedlings hill ${ }^{-1}$

Plant height, number of total tillers hill ${ }^{-1}$, number of effective tillers hill ${ }^{-1}$, number of non-effective tillers hill ${ }^{-1}$, grains panicle ${ }^{-1}$, number of sterile spikelets panicle ${ }^{-1}$, grain yield, straw yield, biological yield and harvest index were significantly affected by number of seedling hill ${ }^{-1}$ (Table 1). The highest number of grains panicle ${ }^{-1}$ (158.62) was found in 4 seedlings hill ${ }^{-1}$ and the lowest number of grains panicle ${ }^{-1}$ (131.70) was found in 2 seedlings hill ${ }^{-1}$. It may be due to the sharing of nutrients, light, temperature etc. among the plants. The highest grain yield (5.03 t ha' ${ }^{1}$) was found in 4 seedlings hill ${ }^{-1}$. The highest grains panicle ${ }^{-1}$ was mainly responsible for this highest grain yield. The highest straw yield ($5.68 \mathrm{t} \mathrm{ha}^{-1}$) obtained from 3 seedlings hill ${ }^{-1}$ and the lowest one ($4.80 \mathrm{t} \mathrm{ha}^{-1}$) was obtained from 2 seedlings hill ${ }^{-1}$. The highest biological yield ($10.65 \mathrm{t} \mathrm{ha}^{-1}$) and the highest harvest index (47.18%) were found in 4 seedlings hill ${ }^{-1}$.

Table 1. Effect of spacing on the yield and yield components of BRRI dhan29

Treatments	Plant height (cm)	$\begin{aligned} & \text { Total tillers } \\ & \text { hill }^{-1} \text { (no) } \end{aligned}$	Effective tillers hill $^{-1}$ (no)	Non-effective tillers hill ${ }^{-1}$ (no)	Panicle length (cm)	No. of grains panicle ${ }^{-1}$	No. of sterile spikelets panicle ${ }^{-1}$	$\begin{gathered} 1000- \\ \text { grain wt } \\ (\mathrm{g}) \end{gathered}$	Grain yield (t ha ${ }^{-1)}$	Straw yield ($\mathrm{tha}{ }^{-1 \text {) }}$	$\begin{gathered} \text { Biological } \\ \text { yield } \\ (\mathrm{t} \mathrm{ha} \\ \hline \end{gathered}$	Harvest index (\%)
Spacing												
$20 \mathrm{~cm} \times 15 \mathrm{~cm}$	93.91b	13.82c	10.38c	3.44b	23.94a	132.01c	32.42a	22.84	3.65c	5.00c	8.65b	41.65c
$20 \mathrm{~cm} \times 20 \mathrm{~cm}$	92.18b	14.62 b	11.09b	3.54b	23.46b	142.88b	29.87b	23.09	4.43b	5.76a	10.19a	43.20 b
$20 \mathrm{~cm} \times 25 \mathrm{~cm}$	97.69a	17.45a	13.41a	4.04a	23.42 b	158.15a	25.64c	22.37	5.02a	5.33b	10.35a	48.42a
CV (\%)	3.11	3.55	3.46	16.21	3.42	3.73	8.51	3.88	3.46	3.94	4.07	3.94
Level of significance	**	**	**	**	**	**	**	NS	**	**	**	**
Number of seedlings hill ${ }^{-1}$												
2	98.09a	17.33a	12.98a	4.35a	23.29	131.70c	36.91a	22.59	3.43c	4.80b	8.23b	41.20c
3	94.09b	14.87b	11.54b	3.32b	23.66	142.71b	27.77b	22.85	4.63b	5.68a	10.31a	44.89b
4	91.60c	13.69c	10.35c	3.35b	23.86	158.62a	23.25c	22.86	5.03a	5.62a	10.65a	47.18a
CV (\%)	3.11	3.55	3.46	16.21	3.42	3.73	8.51	3.88	3.46	3.94	4.07	3.94
Level of significance	**	**	**	**	NS	**	*	NS	**	**	**	**

In a column, figure(s) with same letter or without letter do not differ significantly whereas figures with dissimilar letters differ significantly as per DMRT.
**= Significant at 1% level of probability, $*=$ Significant at 5% level of probability, NS $=$ Not significant
Table 2. Interaction effect of spacing and number of seedlings hill ${ }^{-1}$ on the yield and yield components of BRRI dhan29

Interaction	Plant height (cm)	$\begin{aligned} & \text { Total tillers } \\ & \text { hill }^{-1} \text { (no) } \end{aligned}$	$\begin{gathered} \text { Effective } \\ \text { tillers } \\ \text { hill }^{-1} \text { (no) } \\ \hline \end{gathered}$	Non-effective tillers hill ${ }^{-1}$ (no)	Panicle length (cm)	No. of grains panicle ${ }^{-1}$	No. of sterile spikelets panicle ${ }^{-1}$	$\begin{gathered} 1000- \\ \text { grain wt. (g) } \end{gathered}$	$\begin{aligned} & \text { Grain yield } \\ & \left(\mathrm{t} \mathrm{ha}^{-1)}\right. \end{aligned}$	$\begin{aligned} & \text { Straw yield } \\ & \left(\mathrm{t} \mathrm{ha}^{-1)}\right. \end{aligned}$	$\begin{gathered} \hline \text { Biological } \\ \text { yield } \\ \text { (t ha }{ }^{-1)} \\ \hline \end{gathered}$	Harvest index (\%)
$\mathrm{L}_{1} \times \mathrm{S}_{1}$	100.74a	15.72d	11.90c	3.82bc	22.77e	124.00f	42.72a	22.41	2.51g	4.50f	7.01f	35.87f
$\mathrm{L}_{1} \times \mathrm{S}_{2}$	95.09bc	13.58f	10.27de	3.32c	24.36ab	130.16e	29.68c	22.80	4.09 e	5.40c	9.48c	43.10d
$\mathrm{L}_{1} \times \mathrm{S}_{3}$	85.90 e	12.17h	8.98f	3.19c	24.68a	141.87c	24.87d	23.29	4.35d	5.11d	9.46c	45.98c
$\mathrm{L}_{2} \times \mathrm{S}_{1}$	95.18bc	16.36c	12.35c	4.02bc	23.28cde	130.55 e	37.12b	22.77	3.46 f	5.11d	8.57e	40.33e
$\mathrm{L}_{2} \times \mathrm{S}_{2}$	91.59cd	12.80 g	10.85d	1.95 d	23.17cde	134.27d	30.94c	23.21	4.68c	6.15a	10.83b	43.22d
$\mathrm{L}_{2} \times \mathrm{S}_{3}$	89.76de	14.71 e	10.07 e	4.64ab	23.93abc	163.82b	21.54d	23.30	5.14b	6.03a	11.17a	46.05c
$\mathrm{L}_{3} \times \mathrm{S}_{1}$	98.34ab	19.92a	14.71a	5.21a	23.83a-d	140.56c	30.89c	22.60	4.32d	4.79e	9.10d	47.41b
$\mathrm{L}_{3} \times \mathrm{S}_{2}$	95.60bc	18.22b	13.52b	4.71ab	23.47b-e	163.70b	22.69d	22.53	5.14b	5.49bc	10.62b	48.34ab
$\mathrm{L}_{3} \times \mathrm{S}_{3}$	99.15ab	14.21e	12.00c	2.21d	22.96 de	170.18a	23.33d	21.97	5.61a	5.72b	11.32a	49.51a
CV (\%)	3.11	3.55	3.46	16.21	3.42	3.73	8.51	3.88	3.46	3.94	4.07	3.94
Level of significance	**	**	**	**	**	**	*	NS	**	*	**	**

In a column, figure (s) with same letter or without letter do not differ significantly whereas figures with dissimilar letters differ significantly as per DMRT
*= Significant at 5% level of probability
**= Significant at 1% level of probability
$\mathrm{L}_{1}=20 \mathrm{~cm} \times 15 \mathrm{~cm}$
$\mathrm{L}_{2}=20 \mathrm{~cm} \times 20 \mathrm{~cm}$
$\mathrm{L}_{3}=20 \mathrm{~cm} \times 25 \mathrm{~cm} \quad \mathrm{~S}_{3}=4$ seedlings hill ${ }^{-1}$

Interaction effect of spacing and Number of total tillers hill ${ }^{-1}$

Interaction between spacing and number of seedlings hill ${ }^{-1}$ had significant effect in respect of yield and yield contributing characters except plant 1000-grain weight. The highest plant height (100.74 cm) was obtained from the spacing $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ by transplanting 2 seedlings hill $^{-1}$. The highest total tillers hill ${ }^{-1}$ (19.92) and effective tillers hill $^{-1}$ (14.71) were obtained from $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing with by transplanting 2 seedlings hill ${ }^{-1}$. The highest length of panicle (24.36 cm) was obtained from $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing by transplanting 3 seedlings hill ${ }^{-1}$. The highest number of grains panicle ${ }^{-1}$ (170.18), grain yield ($5.61 \mathrm{t} \mathrm{ha}^{-1}$), biological yield (11.32 t ha) and harvest index (49.51\%) were obtained from $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing by transplanting 4 seedlings hill ${ }^{-1}$.

CONCLUSION

From the present study it could be concluded that the BRRI dhan 29 grown under $20 \mathrm{~cm} \times 25 \mathrm{~cm}$ spacing by transplanting 4 seedlings hill ${ }^{-1}$ emerged out as a promising practice in order to get the optimum grain yield.

REFERENCES

AIS (Agricultural Information Service) (2011) Krishi Dairy, Agril. Inform. Ser. Kamarbari, Farmgate. Dhaka, Bangladesh. p. 23.

BBS (Bangladesh Bureau of Statistics) (2012) Statistical Year Book of Bangladesh, Bangladesh Stat., Div., Minis. Of Plan., Govt. People's Repub. Bangladesh. p. 136-140.

BRRI (Bangladesh Rice Research Institute) (2000) The Annual Report for 1997. Bangladesh Rice Res. Inst.,Joydebpur, Gazipur. p.9.

Chowdhury MJU, Sarker AU, Sarker MAR, Kashem MA (1993) Effect of variety and number of seedligs hill-1 on the yield and its components of late transplant aman rice. Bangladesh J Agril. Sci. 20(2), 311-316.

Gomez KA, Gomez AA (1984) Statistical Producers for Agricultural Research.A Wiley Int. Sci. Pub.John Wiley and Sons, New York, Brisbane, Singapore. p. 139-240.

Uddin MS (1989) Effect of degree of land preparation and spacing on weed growth and grain yield in transplant aman rice. M.S. Thesis, Dept. Agron., Bangladesh Agril. Univ., Mymensingh. p. 1-5.

