ISSN 1991-3036 (Web Version)

International Journal of Sustainable Crop Production (IJSCP)

(Int. J. Sustain. Crop Prod.)

Volume: 7

Issue: 1

February 2012

Int. J. Sustain. Crop Prod. 7(1):6-11(February 2012)

EFFECTS OF WATER STRESS ON MORPHO-PHYSIOLOGICAL CHARACTERS AND YIELD OF RICE GENOTYPES

M.T. ISLAM, M.N. ISLAM, M.A. HOSSAIN AND M.A. KARIM

IJSCP** issn 1991-3036, HQ:19-10 cantral place, saskatoon, saskatchewan, s7n 2s2, Canada

Reprint

Int. J. Sustain. Crop Prod. 7(1):6-11(February 2012)

EFFECTS OF WATER STRESS ON MORPHO-PHYSIOLOGICAL CHARACTERS AND YIELD OF RICE GENOTYPES

M.T. ISLAM¹, M.N. ISLAM², M.A. HOSSAIN² AND M.A. KARIM³

¹Principal Scientific Officer and Head, Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh; ²Former MS student; ³Professor, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh.

Corresponding author & address: Dr. Md. Tariqul Islam; E-mail: islamtariqul05@yahoo.com Accepted for publication on 15 January 2012

ABSTRACT

Islam MT, Islam MN, Hossain MA, Karim MA (2012) Effects of water stress on morpho-physiological characters and yield of rice genotypes. Int. J. Sustain. Crop Prod. 7(1), 6-11.

A pot experiment was carried out at the Bangladesh Institute of Nuclear Agriculture, Mymensingh during aman season from August to November, 2005 to assess the effect of moisture on growth and yield of ten rice genotypes. The ten genotypes included in this study were TNDB-100, BRRIdhan 28, BINAdhan 4, MR-150/11, Ukunmadhu, RM-100/24, RM-100/18. The soil moisture levels were 100% (control), 70% and 40% field capacity (FC). The experiment was laid out in a randomized complete block design with three replications. All the yield and yield contributing characters were the highest at 100% FC and lowest at 40% FC. The highest number of leaves, leaf area, leaf dry weight, stem dry weight, root weight, total dry matter, panicle weight, number of panicle and grain yield were found in RM-100/18. The highest number of leaf, leaf dry weight, root dry weight, stem dry weight, panicle weight, total dry matter, number of panicle and grain yield were found in the treatment combination of RM-100/18 with 100% FC. The highest plant height was recorded in the treatment combination of MR-150/11 with 100% FC.

Key words: water stress, rice, yield and yield attributes

INTRODUCTION

Drought affects every aspects of plant life and inhibits growth, development and productivity and rice is of no exception. The effect of water stress on morpho-physiological characters and yield may vary with variety, degree and duration of stress and growth stage. Several researchers (Islam and Gretzmacher, 2001; Rahman *et al.* 2002) observed that yield losses resulting from water deficit are particularly severe when drought strikes at booting stage. Water stress at or before panicle initiation reduces most potential spikelet number and grain filling rate which decreases grain weight and increases empty grains. Aman rice is generally cultivated under rainfed condition during July to December and faces drought stress occasionally during reproductive stage. However, different cultivars have different ability to respond to drought conditions in terms of growth and development. Therefore, the objectives of this study were to observe the effect of water stress on the rice genotypes and to identify relative water stress tolerant genotype.

MATERIALS AND METHODS

An experiment was conducted in plastic pots at the pot yard of Crop Physiology Division of Bangladesh Institute of Nuclear Agriculture, Mymensingh during 10 August to 29 November 2005. A total of 180 pots were prepared and their individual weight was recorded (150g). Each pot contained 9 kg of soil. The pot was 21 cm deep with 24 cm diameter at the top. The pots were placed in the polythene sheet. The pots were divided into two groups each had 10 rice genotypes, 3 soil moisture levels and 3 replications. The three soil moisture levels viz. 100, 70 and 40% FC were imposed during tillering stage to maturity. Before stress imposition all pots maintained field capacity (100%) level determined though gravimetric method. The 70 and 40% FC were maintained by adding water to the assigned pots with the help of well partitioned weighting balance at two days' interval. The experiment was conducted in randomized complete block design. Soils were fertilized with urea 1.05, TSP 0.87 and MP 0.42 gpot⁻¹ corresponding to urea 170, TSP 135 and MP 65 kgha⁻¹, respectively. All TSP, MP and one-third of the urea were applied as basal dose. The remaining two-thirds of the urea were applied in two equal splits in each pot at 30 and 50 days after transplanting (DAT). At 60 DAT, plant height, number of tillers, leaves, leaf area, root, stem, leaf dry weight and total dry mater plant⁻¹ were recorded. At maturity, plant height, root, stem, leaf, panicle dry weight, total dry matter plant⁻¹, number of panicles plant⁻¹, panicle length. 1000-grain weight, grain yield plant⁻¹ and harvest index (%) were also recorded. The collected data were analyzed with the help of MSTAT computer packages. The mean differences were compared by Duncan's Multiples Range Test (DMRT) at 5% level of significance.

RESULTS AND DISCUSSION

Plant height both at 60 DAT and maturity decreased with the decrease in soil moisture levels (Table 1). The results are in agreement with Islam *et al.* (2005a, 2005b) who found decreased plant height in rice under water stress condition. Reduced plant height might be due to inhibition of cell division or cell enlargement by water stress. At 60 DAT, MR-150/11 was the tallest plant with same statistical rank with 150/10, RM-100/24 and RM-100/18. On the contrary, BRRIdhan 28 was the shortest plant. At maturity RM-100/24 was the tallest plant with same statistical rank with Ukunmadhu, MR-150/11 and MR-150/10. Both at 60 DAS and maturity, the tallest plants were observed in MR-150/11 at 100% FC and the shortest in TNDB -100 at 40% FC. Number of tillers was decreased with the decrease in soil moisture levels (Table 1). The maximum number of tillers plant⁻¹ was recorded in RM-100/18 with same statistical rack with RM-100/24, Ukunmadhu, MR-150/10 and TNDB-100 and the minimum was in RD-2586 and BINAdhan 4, All the genotypes showed the maximum number of tillers at 100% FC except BRRIdhan 31, BRRIdhan 28, BINAdhan 4 and RD-2586. The latter three

did not vary in tiller production under different soil moisture levels. Leaf area $plant^{-1}$ decreased with the decrease in moisture levels (Table 1). The results are in conformity with that of Islam *et al.* (2004) who reported decreased leaf area in rice under water stress condition. BINAdhan 4 produced the highest leaf area plant⁻¹ and MR-150/10 produced the lowest. Interaction of moisture levels and rice genotypes on leaf area plant⁻¹ was not significant.

Treatment	Plant height (cm) at 60 DAT	Plant Height (cm) at maturity	No. of tillers at 60 DAT	No. of leaves at 60 DAT	Leaf area plant ⁻¹ (cm ²) at 60 DAT
Moisture level (% FC)	•		•		•
100 (Control)(T_0)	113.95a	134.56a	23.16a	111.13a	2203a
70 ((T ₁)	109.13b	123.66b	21.20b	101.46b	1791b
$40(T_2)$	105.08c	107.66c	18.13c	89.73c	1459c
Genotype					
TNDB-100 (V_1)	85.38e	89.11f	23.11a	104.00bc	1481ef
BRRIdhan 31 (V_2)	91.22d	105.66b	19.55c	85.33e	2215b
BRRIdhan 28 (V_3)	77.94f	92.66f	16.00b	90.55de	11406fg
BINAdhan 4 (V_4)	102.22c	113.33c	18.55bcd	88.00e	2730a
RD-2586 (V ₅)	102.22c	101.00e	17.77cd	87.11e	1684de
MR-150/10 (V ₆)	127.77a	142.66ab	21.11ab	104.55bc	1205g
MR-150/11 (V ₇)	128.33a	143.77ab	22.88a	115.22ab	1766d
Ukunmadhu (V ₈)	124.66b	145.11a	22.55a	101.00cd	1650ef
RM-100/24 (V ₉)	127.44ab	146.55a	22.77a	113.11ab	2132bc
RM-100/18 (V ₁₀)	126.66ab	139.77b	24.00a	118.88a	1908cd
Interaction	12010040	10,1110	2	1101004	170000
V_1T_0	9131m	92.00mno	27.00a	114.33а-е	1903
V_1T_1	86.33no	90.33mno	22.33a-f	107.66b-g	1427
V_1T_2	78.00p	85.000	20.00e-h	90.00g-l	1112
$V_2 T_0$	94.50l	113.33ij	21.33a-g	100.00b-j	2576
V_2T_0 V_2T_1	91.00lmn	107.00jk	20.33b-h	83.33i-l	2221
V_2T_1 V_2T_2	88.16mno	96.661m	17.00fgh	72.661	1849
V_3T_0	84.16o	98.66lm	17.00fgh	99.33e-j	1591
V_3T_1	77.00pq	93.66mn	15.66gh	90.66g-l	1345
V_3T_2	72.66q	85.66no	15.00h	81.66jkl	1282
$V_4 T_0$	104.66hi	121.33ghi	20.00e-h	96.66d-k	2981
V_4T_0 V_4T_1	101.66ij	114.66i	18.33e-h	91.00f-1	2747
V_4T_1 V_4T_2	100.33ij	104.00k	17.33fgh	76.33k	2461
V_5T_0	107.33h	114.00ij	20.00e-h	100.00d-j	2359
V_5T_0 V_5T_1	107.33hi	97.33lm	18.66e-h	83.00i-l	1463
V_5T_1 V_5T_2	97.00jk	91.66mno	14.66h	78.33jkl	1231
V_6T_0	127.66cde	158.33bcd	23.66a-e	116.33a-d	1393
V_6T_0 V_6T_1	127.00cdc 128.66bcd	145.00ef	23.66a-f	110.55a-d 112.00a-g	1289
V_6T_1 V_6T_2	127.00c-f	124.66gh	18.00d-h	85.33h-l	933
	127.000-1 136.33a	124.00gff 166.33a	23.66a-e	120.00abc	933 2204
V ₇ T ₀ V ₇ T ₁	136.35a 126.00c-f	147.33ef	23.66a-e	120.00abc 116.00a-d	2204 1746
		147.55ei 117.66hi			
V ₇ T ₂ V T	122.66e-g 130.33bc	164.66ab	21.33a-g 26.00ab	109.66a-g	1348
V ₈ T ₀		147.00ef	20.00ab 23.00a-f	112.00a-g	1958 1677
V_8T_1	123.66d-g			98.66c-j 92.33e-1	1316
V ₈ T ₂	120.00g	123.66gh	18.66e-h		
V ₉ T ₀	133.66ab	161.00abc	26.33a	121.66ab 113.00a-f	2545
V_9T_1	126.66c-f	152.00de	24.33abc		2152
V_9T_2	122.00fg	126.66g	17.66e-h	104.66b-i	1700
$V_{10}T_0 V_{10}T_1$	129.00bcd 128.00cde	156.00cd 142.33f	26.33a	131.00a 119.33abc	2520
Violi	LZX UUCCE	14/ 11	24.00a-d	119 3 3abc	1844

Table 1. Effect of soil moisture levels on some morpho-physiological attributes of aman rice genotypes

In a column figures followed by different letter(s) are statistically significant at 5% level as per DMRT

At 60 DAT and maturity, root dry weight plant⁻¹ decreased with the decrease in moisture levels (Table 2). At 60 DAT, BRRIdhan 31, MR-150/11, RM-100/24 and RM-100/18 had higher root dry weights than those of other genotypes. All the genotypes showed the maximum root dry weight at 100% FC except BRRIdhan 31, BINAdhan 4 and RD-2586. At maturity, BRRIdhan 28 had the maximum root dry weight plant⁻¹ with same rank with BINAdhan 4, MR-150/10, RM-100/24 and RM-100/18. The lowest root dry weight was found in RD-2586.

Effects of water stress on morpho-physiological characters and yield of rice genotypes

_	Root	Root	Stem	Stem	Leaf	Leaf
Treatment	weight (g)	weight (g)	weight (g)	weight (g)	weight (g)	weight (g)
	at 60 DAS	at maturity	at 60 DAS	at maturity	at 60 DAS	at maturity
Moisture level (% FC)						
100 (Control)(T ₀)	12.05a	8.44a	23.12a	31.47a	15.10a	15.81a
70 ((T ₁)	8.71b	7.00b	20.25b	25.64b	13.09b	12.89b
40 (T ₂)	7.14c	5.40c	17.15c	17.89c	10.98c	10.39c
Genotype						
TNDB-100 (V_1)	8.13cd	5.58d	19.67cd	17.96d	9.96e	9.61d
BRRIdhan 31 (V ₂)	10.7ab	5.58d	19.70cd	17.33d	13.90d	11.91c
BRRIdhan 28 (V ₃)	7.79d	8.48a	12.86e	14.34d	9.31e	9.01d
BINAdhan 4 (V ₄)	9.48bcd	8.38a	21.96bc	29.89bc	13.29b	14.28d
RD-2586 (V ₅)	8.40cd	3.68c	18.08d	14.54d	9.84e	8.50d
MR-150/10 (V ₆)	7.83d	7.98ab	20.44bcd	31.77b	14.11ab	14.00b
MR-150/11 (V ₇)	10.35abc	7.04bc	22.97ab	28.73bc	15.64ab	14.66b
Ukunmadhu (V ₈)	8.22cd	6.57cd	19.82cd	25.48c	13.80b	15.28b
RM-100/24 (V ₉)	10.18abc	7.88ab	21.38bc	36.56a	14.33ab	15.68ab
RM-100/18 (V ₁₀)	11.86a	8.31ab	24.87a	33.40ab	16.40a	17.33a
Interaction						
V_1T_0	11.35a-d	6.54e-l	20.99b-i	21.56f-i	11.76c-i	12.36f-k
V_1T_1	7.32d-h	5.84g-m	19.97e-j	18.05hij	9.73f-i	9.27k-o
V_1T_2	5.72fgh	4.37k-n	18.05g-m	14.28ij	8.38g-i	7.22no
V_2T_0	13.87a	6.56e-l	22.62a-h	20.53g-j	16.54ab	13.07e-j
V_2T_1	10.34а-е	5.68g-m	21.17b-i	17.70hij	14.21a-f	12.73e-k
V_2T_2	8.06d-h	4.49j-n	15.30j-n	13.77ij	10.94d-i	9.92j-n
V_3T_0	9.62b-g	11.11a	14.48a-n	17.18hij	10.15f-i	10.26j-n
V_3T_1	7.30d-h	8.10b-g	12.77mn	13.43ij	9.37ghi	8.681-0
V_3T_2	6.45d-h	6.22f-m	11.34n	12.40ij	8.40hi	8.10mno
V_4T_0	12.47abc	10.10ab	26.24abc	36.31abc	15.52a-d	15.61b-g
V_4T_1	9.13c-h	8.46b-f	20.84c-i	30.16b-e	13.54a-g	14.38d-i
V_4T_2	6.85e-h	6.57e-l	18.81f-l	23.21e-h	10.82e-i	12.86e-i
V_5T_0	13.45ab	4.66i-n	22.74a-h	18.22hij	12.52b-h	11.92h-l
V_5T_1	6.74e-h	3.98mn	17.55h-m	13.73ij	9.71f-i	7.38no
V_5T_2	5.02h	2.42n	13.94mn	11.69j	7.30i	6.210
$V_6 T_0$	10.19a-e	9.52abc	23.68a-f	37.83ab	17.55a	16.17b-e
V_6T_1	7.82d-h	8.32b-f	20.20d-j	31.85bcd	13.94a-g	15.00c-h
V_6T_2	5.48gh	6.09f-m	17.46h-m	25.62d-h	10.841-i	18.85i-m
$V_7 T_0$	13.22abc	8.78b-e	25.60a-d	43.95a	17.42a	18.96b
V_7T_1	9.52b-g	6.86e-j	23.22a-g	29.17b-f	15.5a-d	13.40d-j
V_7T_2	8.30d-h	5.49h-m	20.09d-j	13.06ij	13.93a-g	11.63h-l
V_8T_0	9.72b-f	8.71b-e	20.97b-i	32.42bcd	14.92а-е	18.12b-e
V_8T_1	7.84d-h	6.78e-k	19.72e-k	26.92-g	13.79a-g	15.53 b-g
V_8T_2	7.12e-h	4.23h-m	18.79f-l	17.10hij	12.68b-h	12.19g-k
V_9T_0	12.76abc	9.01a-e	26.44ab	43.98a	16.69ab	18.71d
V_9T_1	9.75d-f	7.49c-h	22.01a-h	37.71ab	14.93a-e	15.83b-f
V_9T_2	8.03d-h	7.14c-h	15.69i-n	27.99c-g	11.45d-i	12.51f-k
$V_{10}T_0$	13.85a	9.41a-d	27.46a	42.72a	18.03a	22.91a
$V_{10}T_1$	11.34a-d	8.51b-f	27.40a 25.10а-е	37.68ab	16.16abc	16.72bcd
$V_{10}T_2$	10.40a-e	7.03d-i	27.05a-h	19.80g-j	15.01a-e	12.37f-k

Table 2. Effect of soil moisture levels on dry matter distribution in plant parts of aman rice genotypes

In a column figures followed by different letter(s) are statistically significant at 5% level as per DMRT

The maximum root dry weight plant⁻¹ was recorded in BRRIdhan28 at 100% FC with same rank with BINAdhan 4, MR-150/10, RM-100/24 and RM-100/18. The genotype TNDB-100 and BRRIdhan 31 showed the lowest root dry weight at 40% FC. Stem dry weight both at 60 DAT and maturity, decreased with decreasing soil moisture levels (Table 2). The highest stem dry weight plant⁻¹ was recorded in RM-100/18 with same statistical rank with MR-150/11. The lowest stem dry weight plant⁻¹ was noticed in BRRIdhan 28. All the genotypes produced maximum stem dry weight at 100% FC except Ukunmadhu. At maturity, stem dry weight was the highest in RM-100/18. The genotype RM-100/24 showed the maximum stem dry weight at 100% FC with same rank with that of 70% FC, with RM-100/18 at 70 and100% FC and BINAdhan 4 at 100% FC. Leaf dry weight at 60 DAT decreased with the decrease in soil moisture levels (Table 2). At 60 DAT, the highest leaf area plant⁻¹ was recorded in RM-100/18 with same rank with RM-100/18 with same rank with RM-100/18 at 70 and100/24. Ukunmadhu, MR-150/11 and MR-

150/10. All the genotypes showed the maximum leaf dry weight at 100% FC except TNDB-100, BRRIdhan 28 and RD-2586. At maturity, RM-100/18 had the highest leaf dry weight with same rank with RM-100/24. The lowest leaf dry weight was recorded in RD-2586. RM-100/18 showed the maximum leaf dry weight at 100% FC. The results are in agreement with those of Islam *et al.* (1994a, 1994b) who reported decreased dry mass of root, leaf and stem in rice genotypes under water stress condition.

Panicle dry weight/plant decreased with the decrease in soil moisture levels (Table 3). RM-100/18, RM-100/24 and BRRIdhan 31 showed higher panicle dry weights than that of other genotypes.

		Total dry matter (g) at	Total dry matter (g) at
Treatment	Panicle weight (g) at maturity	60 DAT	maturity
Moisture level (% FC)			
100 (Control)(T_0)	27.79a	55.28a	83.70a
70 ((T ₁)	19.23b	42.06b	64.69b
40 (T ₂)	6.05c	35.28c	39.88c
Genotype			
TNDB-100 (V ₁)	15.45cd	37.77de	49.07cd
BRRIdhan 31 (V ₂)	20.05abc	44.36bc	54.88c
BRRIdhan 28 (V_3)	13.54d	29.97f	45.11d
BINAdhan 4 (V_4)	17.91a-d	44.75bc	70.53b
RD-2586 (V ₅)	16.68bcd	36.33e	43.43b
MR-150/10 (V ₆)	16.34bcd	42.39cd	70.10b
MR-150/11 (V ₇)	16.83bcd	48.96ab	67.26b
Ukunmadhu (V_8)	17.09bcd	41.85cde	64.43b
RM-100/24 (V ₉)	20.89ab	45.90bc	81.01a
RM-100/18 (V ₁₀)	22.03a	53.14a	81.74a
Interaction			
V_1T_0	21.96d-h	44.11e-j	62.43ghi
V_1T_1	14.61g-j	37.04g-m	47.78i-l
V_1T_2	9.79i-l	32.16klm	37.01lm
$V_2 T_0$	30.48abc	53.04a-d	70.65fg
V_2T_0 V_2T_1	17.20e-i	45.37b-1	53.32h-k
V_2T_2	12.48ijk	34.31i-m	40.66klm
V_3T_0	25.14b-e	34.26i-m	63.71gh
V_3T_1	9.20i-1	29.44lm	38.60klm
V_3T_2	6.28kl	36.20m	33.02lm
V_4T_0	31.30ab	54.24abc	93.29bc
V_4T_0 V_4T_1	16.73f-i	43.51e-k	69.75fg
V_4T_1 V_4T_2	5.91kl	36.49h-m	48.56h-l
V_5T_0	26.52bcd	48.72a-f	61.33g-j
V_5T_0	16.21ghi	34.01j-m	41.31klm
V_5T_2	7.31jkl	26.26m	27.64m
V_6T_0	23.18b-g	51.42a-e	86.71cd
V_6T_0 V_6T_1	21.81d-h	41.96d-k	76.99d-g
V_6T_1 V_6T_2	4.031	33.79j-m	46.61jkl
$V_{7}T_{0}$	24.52b-f	56.24ab	96.19bc
V_7T_0 V_7T_1	23.26b-g	48.32a-g	72.70efg
$V_7 T_1$ $V_7 T_2$	2.72l	48.32a-g 42.33d-k	32.911m
$V_7 I_2$ $V_8 T_0$	25.52bcd	42.530-k 45.61b-i	84.77e-f
V_8T_0 V_8T_1	22.25e-h	41.35e-k	71.49efg
V_8T_1 V_8T_2	3.511	38.00f-1	37.04lm
	34.37a	55.84ab	106.06ab
V_9T_0	22.50e-h	46.69b-h	83.54ef
V_9T_1	5.79kl	46.690-n 35.17i-m	83.54ei 83.44h-k
V_9T_2	34.87a		85.44п-к 111.87a
$V_{10}T_0$		59.33a	
$V_{10}T_1$	28.49a-d	52.61a-e	91.41bcd
$V_{10}T_2$	2.721	47.47b-h	41.93klm

Table 3. Effect of soil moisture level on panicle dry weight and total dry matter of aman rice genotypes

In a column figures followed by different letter(s) are statistically significant at 5% level as per DMRT

The genotype RM-100/18 showed the maximum panicle dry weight at 100% FC with same rank with RM-100/24, BINAdhan 4 and BRRIdhan 31 at 100% FC. Total dry matter both at 60 DAT and maturity decreased with decreasing soil moisture levels (Table 3). At 60 DAT, RM-100/18 produced the highest total dry matter with same rank with MR-150/11. The lowest total dry matter/plant was found in BRRIdhan 28. All the

genotypes showed the maximum total dry matter/plant at 100% FC except TNDB-100, BRRIdhan 28 and Ukunmadhu. At maturity, the maximum total dry matter/plant was recorded in RM-100/18 with same rank with RM-100/24. The minimum total dry matter was recorded in BRRIdhan 28 with same rank with TNDB-2586. The genotype RM-100/18 produced the maximum total dry matter plant⁻¹ at 100% FC with same rank with RM-100/24. The results are in conformity with those of Islam *et al.* (2005a, 2005b), who observed varietal differences in root, leaf stem dry mass and total biomass production under different soil moisture regimes.

Number of panicles plant⁻¹ decreased with the decrease in soil moisture levels (Table 4). The genotypes TNDB-100, BINAdhan 4, RD-2586, RM-100/24 and RM-100/18 produced higher number of panicles plant⁻¹. RM-100/18 produced the highest number of pods/plant at 100% FC with same rank with TNDB-100 at 100% FC.

Treatment	No. of panicles	Panicle	1000-grain	Grain yield (g)	Harvest
	plant ⁻¹	length (cm)	weight (g)	plant ⁻¹	index (%)
Moisture level (% FC)	17.50	22.02	10.76	21.04	26.02
100 (Control)(T_0)	17.53a	23.93a	18.76a	21.94a	26.92a
$70((T_1)$	14.50b	22.09b	17.56b	14.18b	21.89b
40 (T ₂)	8.00c	19.92c	13.90c	2.98c	10.54c
Genotype	15.00	20.9.1	20.02	11.021.1	22.04
TNDB-100 (V_1)	15.66a	20.8de	20.93c	11.93bcd	22.94c
BRRIdhan 31 (V_2)	9.44c	23.68a	23.11b	14.71abc	25.32ab
BRRIdhan 28 (V_3)	11.66bc	22.92ab	23.36b	9.09d	17.75bc
BINAdhan 4 (V_4)	14.22ab	21.84bc	23.66b	12.84a-d	16.28bc
RD-2586 (V ₅)	16.55a	19.42e	25.55a	12.26bcd	33.64a
MR-150/10 (V_6)	12.55b	22.41abc	9.57d	11.45cd	14.05c
MR-150/11 (V ₇)	11.66bc	22.29bc	10.57d	12.10bcd	15.33bc
Ukunmadhu (V_8)	12.44b	23.0ab	9.91d	13.03a-d	17.84bc
RM-100/24 (V ₉)	14.00ab	22.70b	10.48d	16.10ab	17.42bc
RM-100/18 (V ₁₀)	15.22a	21.16cd	10.24d	16.85a	17.24bc
Interaction	21.22.1	21 20 ·	22 52 1	10.40	20.24.1
V_1T_0	21.33ab	21.38g-j	22.53de	18.40c-g	29.24ab
V_1T_1	14.66c-h	20.38ijk	21.80e	12.59ghi	26.29abc
V_1T_2	11.00 f-k	19.38jkl	18.46f	4.80jk	13.28b-f
V_2T_0	11.33e-j	24.99abc	25.60abc	24.03a-d	33.87a
V_2T_1	9.66ijk	23.66a-g	24.13cde	13.19f-i	24.66a-d
V_2T_2	7.33i-m	22.38e-i	19.60f	6.92ijk	17.43a-f
V_3T_0	13.33d-i	25.11ab	25.86abc	18.49c-g	28.90abc
V_3T_1	11.33e-j	22.61e-i	24.76bcd	5.35jk	13.89b-f
V_3T_2	10.33g-k	21.05h-k	19.46f	3.45jk	10.47e-f
V_4T_0	17.00bcd	23.05b-h	26.53abc	24.95abc	26.67abc
V_4T_1	15.66c-f	21.71f-j	25.00bc	10.04hij	14.80b-f
V_4T_2	10.00h-k	20.77 h-k	19.46f	3.54jk	7.38d-f
V_5T_0	18.66bc	20.99h-k	27.73a	21.62а-е	35.68a
V_5T_1	17.00bcd	19.77jkl	26.93ab	12.46ghi	29.62ab
V_5T_2	13.33d-i	17.491	22.00e	2.65jk	35.63a
V_6T_0	16.33cd	24.24а-е	11.46gh	17.82c-g	20.40a-f
V_6T_1	15.00c-g	22.83b-h	10.13ghi	15.40e-h	20.28a-f
V_6T_2	6.33 klm	20.17ijk	7.13j	1.13k	2.46f
V_7T_0	18.00bcd	24.94a-d	12.20g	19.56b-g	20.23a-f
V_7T_1	13.66d-i	22.99b-h	10.53ghi	15.00e-h	20.52a-f
V_7T_2	3.33m	18.94k	9.00hij11.93g	1.75k	5.25ef
V_8T_0	16.33cd	25.83a	10.66ghi	20.71a-f	24.62a-d
V_8T_1	14.33 e-i	22.55d-i	7.13j	27.09ab	23.85a-d
V_8T_2	6.66 j-m	20.66h-k	11.86g	1.30k	5.04ef
V_9T_0	18.00bcd	24.77а-е	11.20gh	27.56ab	25.96abc
V_9T_1	16.00cde	23.77a-g	8.40ij	18.07e-g	21.59а-е
V_9T_2	8.00jkl	19.55jkl	11.93g	2.69jk	4.71ef
$V_{10}T_{0}$	25.00a	23.99a-f	10.46ghi	29.33a	23.61a-d
$V_{10}T_1$	17.00bcd	20.66h-k	8.33y	22.66а-е	24.37a-d
$V_{10}T_2$	3.66lm	18.82k		1.55k	3.74ef

Table 4. Effect of soil moisture levels on yield and yield attributes of aman rice genotypes

In a column figures followed by different letter(s) are statistically significant at 5% level as per DMRT

Panicle length decreased with decreasing soil moisture levels. Reduced panicle length might be due to inhibition of cell division or cell enlargement by water stress. BRRIdhan 31 had the longest panicle with same rank with BRRIdhan 28, MR-150/10, Ukunmadhu and RM-100/18. The shortest panicle was found in RD-2586 with same rank with TNDB-100. All the genotypes had the maximum panicle length at 100% FC except TNDB-100 and BINAdhan 4. Thousand grain weight decreased with the decrease in soil moisture levels (Table 4). The highest 1000-grain weight was recorded in RD-2586 and the lowest in MR-150/10 with same rank with MR-150/11, Ukunmadhu, RM-100/24 and RM-100/18. BRRIdhan 31, BRRIdhan 28, BINAdhan 4 and RD-2586 showed the maximum 1000-grain weight at 100% FC and RD-2586 at 70% FC. Grain yield plant⁻¹ decreased with the decrease in soil moisture levels (Table 4). Decreased grain yield under water stress might be due to less photosynthesis and insufficient translocation. The genotype RM-100/18 produced the highest grain yield plant⁻¹ with same rank with BRRIdhan 31, BINAdhan 4, Ukunmadhu and RM-100/18. Harvest index also decreased with decreasing soil moisture levels. RD-2586 produced the maximum harvest index with same rank with BRRIdhan 31. Other genotypes had statistically similar grain yield plant⁻¹. All the genotypes showed maximum grain yield at 100% FC. The results are in agreement with those of Islam (2000), Rahman *et al.* (2002 and Choudhury *et al.* (2004) who reported decreased yield and yield attributes under water stress condition.

CONCLUSION

All the morpho-physiological attributes studied and yield decreased with the decrease in soil moisture levels. RM-100/18 showed the best performance among the genotypes.

REFERENCES

Chowdhury MJ, Islam MT, Islam MO (2004) Evaluation of two local transplanted aman rice cultivars and a mutant under soil moisture stress. *J. Bangladesh Soc. Agric. Sci. and Technol.*, 1(1& 2), 127-131.

Islam MT (2000) Screening of some transplanted aman rice cultivars under water stress condition. *Bangladesh J. Train. and Devt.* 14(1 & 2), 213-220.

Islam MT, Gretzmacher R (2001) Grain growth pattern and yield performance of some transplanted aman rice cultivars in relation to moisture stress. *Bangladesh J. Nuclear Agric.* 16 & 17, 21-28.

Islam MT, Hossain MA, Islam MT (2005a) Effect of soil moisture on morpho-physiological and yield attributes of boro rice genotypes. *J. Bangladesh Soc. Agric. Sci. and Technol.*, 2(3 & 4), 81-84.

Islam MT, Islam MT, Salam MA (1994b) Growth and yield performance of some rice genotypes under different soil moisture regimes. *Bangladesh J. Train. and Devt.*, 7(2), 57-62.

Islam MT, Khan MEH, Islam MT (2005b) Grain growth pattern and yield attributes of boro rice genotypes under soil moisture stress. *J. Bangladesh Soc. Agric. Sci. and Technol.*, 2(3 & 4), 25-28.

Islam MT, Salam MA, Kauser M (1994a) Effect of water stress at different growth stages of rice on yield components and yield. Progress. Agric., 5(2), 151-156.

Islam Z, Islam MT, Islam MO (2004) Effect of soil moisture on dry matter production and yield boro rice under pot culture conditions. *Bangladesh J. Crop Sci.*, 16(1), 37-43.

Rahman MT, Islam MO (2002) Effect of water stress at different growth stages on yield and yield contributing characters of transplanted aman rice. *Pakistan J. Biol. Sci.*, 5(2), 169-172.