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ABSTRACT 
Islam T, Tsuiki M (2011) Spatial distribution pattern of plants in a simulated grassland colony. J. Innov. Dev. Strategy 5(3), 35-43.   

 

The spatial heterogeneity of plants influences the ecology of plant communities. This paper examines the spatial 
distribution pattern of plants in a simulated grassland colony. A circular quadrat sampling method was used to construct 
the colony. Edge problems arose because circular quadrats were placed randomly in a square area. We developed a 
simple mathematical correction to eliminate the shortcomings of the edge effect of the circular colony. Spatial 
heterogeneity of binary characteristics such as occurrence or non-occurrence of plants was studied. We addressed the 
heterogeneity of within and between sampling units. Binomial distribution (BD) and beta-binomial distribution (BBD) 
were used to represent the spatial pattern within and between sampling units. The BBD described the frequency 
distribution of the occurrence of plants aggregated between sampling units more accurately than the BD. It was found 
that the heterogeneity within a colony is of an under-dispersion type. Therefore, the required number of sampling units 
to achieve a level of accuracy of 20% variation was determined.  
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INTRODUCTION 
 

Spatial pattern in a plant community population is an important aspect of the community ecology. Energy inputs, 
disturbances, and species interactions are the main causes of the formation of such spatial patterns, and these 
patterns often influence the diversity of the plant communities. The size of individual plant species, spatial 
heterogeneity in biomass, and species diversity can thus be measured if the distribution of the spatial patterns is 
known. In grassland, plants or species form a continuum with different patterns of heterogeneity. In general, 
heterogeneity in the grassland continuum is classified as patterns that are regular, random, or aggregated. In a 
regular pattern, plants are more or less equally spaced, and a completely regular pattern has no heterogeneity. 
However, in a random pattern, plant spacing in the continuum are not related to one another, and individual plants 
exist at any place with the same probability. In an aggregated pattern, plants tend to form clusters in particular 
places. As spatial heterogeneity of a species increases, the spatial patterns randomly change from regular to 
aggregate. 
 

The number of individual plants per unit area can be estimated assuming the negative binomial distribution 
(Fisher 1941) or the Poisson distribution (Greig-Smith 1983) for the spatial pattern of individual plants. The 
number of plant occurrences is also estimated assuming binary counts (presence or absence) using beta-binomial 
distribution (BBD; Skellam 1948) and binomial distribution (BD; Greig-Smith, 1983). Similarly, the gamma 
distribution (May 1973; Shiyomi et al. 1984) and the beta distribution (Chen et al. 2006) are assumed to model 
the biomass and species (plant) coverage, respectively. Recent studies have demonstrated that BBD is more 
appropriate for estimating the number of plant occurrences since the data on plant occurrence are binary (Chen et 
al. 2005). The BBD is a mixture of binomial distribution and beta distribution that accounts for the 
over-dispersion; the two parameters of the distribution are the expected probability of a plant occurrence ( )p̂ and 

the aggregation index ( )θ . The BBD model has been used successfully in the study of, for example, 
chromosomes, market research, toxicology, plant disease incidence, and teratology (Skellam 1948; Haseman and 
Kupper, 1979; Williams 1975; Paul 1982). 
 

In this paper, we aim to implement the BBD model to determine the distribution of the spatial pattern of plants in 
grassland. The main objective is to quantify the spatial pattern of plant species in a grassland colony. Using a 
computer simulation, fictitious vegetation (considered to be a colony) was sampled using a circular quadrate 
method to test the adequacy of the BBD model in such environmental situations. A simple mathematical 
correction for circular edge adjustment is also suggested to overcome the shortcomings of the edge effect of the 
colony. For simulated data on a specified species A, both BD and BBD were used to determine heterogeneity 
among colonies. The heterogeneity within each colony was also characterized. 
 

MATERIALS AND METHODS 
 

Sampling 
 

A cluster sampling method can directly measure heterogeneity or variability of any binary variable (e.g., pest or 
plant disease or occurrence of plants) compared to other methods such as simple random samples, systematic 
samples, and stratified samples. In cluster sampling, each sampling unit contains n individuals, and all individuals 
in a sampling unit are observed. Using a computer simulation, hypothetical grassland was sampled with a circular 
quadrat. For this purpose, a fictitious square area was created in which the sampling units (circular quadrats) were 
randomly placed. These sampling quadrats were considered to be colonies (Fig. 1). 
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Let  be the number of observed plants of a species A per sampling unit and be the number of sampling 
units ( ). A large population (e.g.- a field) is assumed in the sampling process, so that most 
individuals were not considered as sampling units, i.e.- is small relative to the total population size. As a 
result no finite population correction is needed in the formulas presented in this paper. Let each sampling unit 
contain  individuals, i.e. - the number of counted plants per sampling unit  varies from 0 to . 

iX N
Ni ,......,2,1=

N

in iX in
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Square boundary (inside square) intersecting the colonies of different sizes 
 

Edge Correction 
 

It is considered that the colonies have almost circular boundaries. The probability of selecting a plant from a 
colony of size  is R P  = AR , where A  is the area of the considered square area. Using a similar concept, it 
could be found that the probability of a random line intersecting the colony is proportional to the colony’s 
diameter. Assuming that a randomly drawn line intercepts the ith colony in the represented area, the estimated 
frequency of plants in the ith colony is as follows: 

iii fdf ∞*             (1) 

where  is the observed frequency in the ith colony,  is the diameter of the ith colony, and  is the true 
or corrected frequency in the ith colony. 

*
if id if

 

After introducing a normalizing factor, the normalized unbiased estimate of frequency of the ith colony can be 
found as (from equation 1): 
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where the denominator of the equation is the normalization factor that ensures = 1. Now the above 

equation (2) can be written as: 
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where: 

i
i d

w 1
=  is the correction term. 

 

Let us consider that a square is randomly placed in a represented area, intercepting the colony. The correction 
term can be defined as (Kerscher 1999): 

( )i
i RAarea

Aw
∩

=              

where A  is the area of the square and  is the size of ith colony. The denominator is the “effectively” 
sampled area. 
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Binomial Distribution (BD) 
Let us assume that the ith colony contains  plants of species A. If the number of plants of species A in the ith 
colony has a common probability of occurrence and the plants are independent, then  follows a BD. If  is 
the estimated probability of occurrence of the plant of species A in the ith colony then the probability mass 
function (pf) of  will be given by: 

in
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By the binomial rule, the mean and the variance of  are given, respectively, by  and . 
Consequently, the proportion of the occurred plants of species A per sampling unit will have a and 
variance

iX ii pn ( )iii ppn −1

ip
( ) iii npp −1 . 

 

Beta-Binomial Distribution (BBD) 
 

The BBD is used for accounting for any possible over-dispersion in BD. It plays a role in binomial regression 
similar to that played by the negative binomial distribution in Poisson regression. Both are mixture distributions 
that accommodate variances if they exceed the usual variance functions for the binomial and Poisson 
distributions. To clarify the issue, the BD theoretically requires the variance to be smaller than the mean of the 
distribution, but this condition does not prevail under all practical situations. The BBD can be used to model such 
situations in which, under binomial circumstances, the variance could exceed the mean of the distribution. 
 

Under the BBD, the probability  varies across the observational units for which the variables  s are 

observed and hence  is taken to be a random variable and is assumed to follow a beta distribution with the pf: 
ip iX
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where α  and β  are the parameters of the beta distribution and Be is the beta function. 
Since  is a random variable in BBD, it can take values between 0 and 1, and for its flexibility, the beta 
distribution is a promising way for characterizing this parameter’s heterogeneity. Our primary interest is on the 
effects of the variation of this parameter on the observed . The pf of BBD is as follows: 
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where iα  and iβ  are positive parameters. 

The mean and variance of BBD are defined (Ennis and Bi, 1998) as µ =  and                

= , respectively. It is evident that 

( 1−+ iiii n βαα )
)v ( )iiiiii nn ++ βαβα ( ) 2−+ ii βα ( 11 −++ ii βα µ  and  are both 

functions of 

v

iα  and iβ , and simultaneous solution of the equations will produce the values of iα  and iβ . 
 

For BBD, ( )iii βαθ +=1  is the index of heterogeneity or aggregation. If 0=iθ , the distribution of 

occurrence is binomial, and over-dispersion increases with increasing values of iθ . The maximum likelihood 

estimates of  and ip iθ  can be obtained using an iterative Newton-Raphson procedure (Smith 1983). 
 
We used Tarone’s Z test, the most powerful test to test the null hypothesis 0=θ (Tarone 1979). Tarone’s Z  
statistics can be defined as: 
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where is the total number of colonies,  is the overall number of occurred plants,  is the number of 
occurred plants of the species A, and  is total plants in the ith colony, respectively. The statistics were scaled 
to have a standard normal distribution. 
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Because of the non-constant number of plants per quadrat, it is not possible to calculate expected frequencies. 
Therefore,  goodness-of-fit (GOF) could not be used in calculating BBD. In this paper, we used another GOF 
test for BBD, proposed by Neerchal and Morel (1998). In this process, these authors first divided the unit interval 
into 

2χ

r  mutually exclusive intervals  (sA s  = 1, 2,…, r ). Now the GOF test statistics are as follows: 
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where I (.) is an indicator function. 
 

The above is the usual Pearson’s  statistics. This statistical test is used for testing the adequacy of the 
model. 

2χ 2χ

 

Internal Heterogeneity 
 

Let  be the variable of interest of the jth species in the ith colony.  is the probability of selecting of the 
jth species in the ith colony. 

ijX ijp

 

Again let us consider that  is the total of  clusters of the component binary variable. Each cluster has its 
own response probability . Now we assume that each of the  clusters have m equal number of plants and m 

= 

iX iC

ijp iC

ii Cn . The mean of  for an observed  is denoted asijp ix ip . ip  is the variable response (occurred) 

probability having mean  and variance p~ iφ ip~ ( )ip~1− , where is the correlation coefficient of any two 
components in the ith colony. 
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The conditional expectation and variance of  can be found as follows: iX
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When there is only one cluster, the conditional variance is equal to the binomial variance. The above conditional 
variance is less by the amount of the second term from the conditional variance when there is only one cluster. 
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The mean is 

( ) ( )( ) pnpXEEXE iijii
~==  

We know that, 
( ) ( )( ) ( )( )ijiijiji pXEVpXVEXV +=      (4) 

 

Now, ( )( )ijij pXVE of equation (4) can be calculated as:- 
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( ) ( iiii ppn )φ−−= 1~1~          (5) 
 

The  ( )( )iji pXEV  of equation (4) can be calculated as:- 

( )( ) ( )iiiji pmCVpXEV =  

( iiii ppmn )~1~ −= φ     (6) 
 

Using the values from equations (5) and (6) in equation (4) we found that, 
( ) ( ) ( ) ( )iiiiiiiii ppmnppnXV ~1~1~1~ −+−−= φφ  

 

The simplified value is 
( ) ( ) ( )( )iiiii mppnXV φ11~1~ −+−=  

Now, if  = , the effective cluster size  = 1, then follows BD. iC in m iX
Again assume that each of the  have different . ijX ijp

The conditional expectation and variance of  can be found as follows (Feller 1968): iX
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Here  is the relative measure of the internal parameter heterogeneity, which can take the values from 0 to 1. If 

any internal heterogeneity is present, i.e.,  > 0, 
iγ

iγ ( )iji pXV  will be less than the binomial variance. 
 

Determination of Sampling Units 
 

Using a standard error of (estimated occurrence) and a level of heterogeneity identical to that used in the 
Karandinos study (1976), we calculated  for sampling other than cluster sampling of insect density or binary 
data. Here we develop the methods for determining . 

p̂
N

N
Let nXp ii = , for i = 1, 2,…, N, is the proportion of occurred plants in the th colony. i
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Now,  can be defined as: p̂

nN

p
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The estimated variance of  is as follows (Bi et al. 2000) p̂
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 is the intra-cluster correlation. 

The coefficient of variation (CV) is a useful statistic for characterizing precision in relative terms. Here CV is 
defined as  

CV  = 
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p
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Now using equation (8) we found 
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npN −+−
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ρ
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For the BD, ρ  = 0 and equation (9) reduces to ( ) 2ˆˆ1 VCpnp− . Again if n = 1, i.e., for sampling other than 
cluster sampling, the equation further reduces to the well-established formula for the binomial 
distribution, ( ) 2ˆˆ1 VCpp− . 
 

The value of ρ  may vary with cluster size (n). Hence, it is preferable to retain the same n in the preliminary 
stage. For uncontrolled constant cluster size, it is better to use the mean cluster size, which is why we used mean 
cluster size in the present paper. 
 

RESULTS AND DISCUSSION 
 

Edge Correction 
 

To demonstrate the outcomes with the suggested corrections, we simulated a hypothetical population of grasses. 
In the simulation, the plants were scattered over the grassland. For sampling, an area of 50 by 50 units was 
selected. This area was sampled randomly with circular quadrats (considered to be a colony) based on a diameter 
of 0.05 units. The simulated results show that the observed distributions differed significantly (p ≤ 0.05, 
Kolmogorove-Simrnov test) from the true frequency distribution. By applying the correction term (equation 3), 
we found that the corrected distributions retrieved the true frequencies for species A (Fig. 2). This result 
demonstrates that the correction is significant and it changes the interpretation of the results dramatically. 
 

  
 

 
Fig. 2. After edge correction, corrected frequency distributions are found in the simulation for the observed data   
The graph represents data from species A. 
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Identifying the Distribution 
 

The corrected proportion and the predicted probabilities of a small group of occurred plants are shown in Table 1 
for the BD and the BBD, respectively. The data in this table indicates that the BBD fits better than the BD. 
 

Table 1. Corrected proportions and estimated probabilities 
 

Frequency Corrected BD BBD 
0 0.803 0.993 0.998 
1 0.019 0.694 0.011 
2 0.009 0.003 0.032 
3 0.009 0.002 0.372 
4 0.158 0.000 0.490 

BD =binomial distribution, BBD =beta-binomial distribution 
 

The maximum likelihood estimator (MLE) of p and θ  are  = 0.1, 0.2, and 0.4 and  = 0.20, 0.11, and 0.14 
for = 4, 6, and 8, respectively (Table 2). Here the MLE of 

p̂ θ̂
n θ  of the BBD is larger than zero, indicating that 

the occurred plants showed over-dispersion. Therefore, it could be concluded that the distribution of the data 
departed from the BD. 
 

The Tarone’s Z scores together with the results of fitting BBDs are presented in Table 2. Tarone’s Z test 
confirms the necessity of using the BBD, i.e., the plants demonstrated over-dispersion. The existence of 
over-dispersion in the data causes the BD to be unreliable. The GOF indicated that the BBD improved the 
description of the frequency distribution of occurred plants (Table 2). 
 

Table 2. Tarone’s Z statistics and results of fitting the BBD for assessing aggregation of plants 
 

n  p-value 
of Z 

MLE 
of θ  

MLE 
of p 

p-value of GOF  
of BBD 

4 < 0.05 20.5 0.1 =0.22 
6 < 0.05 11.2 0.2 =0.24 
8 < 0.05 14.4 0.4 =0.27 

n = mean cluster size; MLE = maximum likelihood estimator; BD = binomial distribution, BBD = beta-binomial distribution, GOF = 
goodness of fit 
 

Internal Heterogeneity 
 

As shown in Table 3, the conditional variance (using equation 7) is smaller than the binomial variance for 
different numbers of observations, e.g., when  = 3, binomial variance is 0.712 and conditional variance is 
0.472. Therefore, we can observe that the heterogeneity at the individual level is of the under-dispersion type. 

n

Table 3. Binomial variance with conditional variance for different numbers of observations 
 

Number of  
observations 

Binomial  
variance 

Conditional  
variance 

2 0.375 0.25 
3 0.712 0.472 
4 0.998 0.659 
5 1.241 0.819 
6 1.449 0.958 
7 1.632 1.081 

 

Sampling Units Determination 
To achieve CV = 0.2, one needs more sampling units for over-dispersed data than for randomly distributed 
(binomial) data. For instance, at  = 0.1, the required  is ~10 (  = 4) for the binomial case and ~12 for the 
over-dispersed case (Table 4). 

p̂ N n
 

Table 4. Sampling unit with sample size 
 

N  n  

BD BBD 
4 10 12 
6 17 25 
8 29 61 

n  = mean cluster size;  = number of colonies; BD = binomial distribution, BBD = beta-binomial distribution N
The choice of which combination should be used depends on the relative costs of  and . n N
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CONCLUSION 
 

This study focused on spatial distribution problems of plants in colonies having a circular boundary. The circular 
quadrat method was used for sample collection, and problems of the edge with respect to frequency distribution 
evaluations were addressed. Ignoring colonies intersected by the edge of the square leads to a underestimation of 
heterogeneity. In contrast, considering all the observations of the intersected colonies leads to overestimation. 
This means that the edge effect on sampling biases frequency distribution estimates. The edge effect may result in 
erroneous nature reserve management policies, and the suggested correction of the edge effect can eliminate these 
types of sampling errors (Figure 2). 
 

Our results indicated that the plants were distributed in an aggregative pattern between the simulated colonies and 
thus the BD cannot adequately describe the observed data (Table 1). The BBD captured the observed 
heterogeneity (over-dispersion) in the plant occurrence as indicated by Tarone’s Z test for the θ  (Table 2). All 
the values of MLE of θ  are greater than zero (Table 2). The results for BBD were in high agreement with the 
GOF test (Table 2). Our data demonstrated that the plant occurrence within a colony showed underestimated 
heterogeneity (Table 3). 
 

It is necessary to determine the number of sampling units that would be equally applicable over the whole range 
of the mean plant occurrence. The BBD (Table 4) was shown to require more sampling units than the BD.  
 

Finally, it could be concluded that the distribution of plant occurrence between simulated colonies was clearly 
aggregated, indicating an over-dispersed, non-random variability among groups of plants. In contrast, within 
groups of plants, plant occurrence showed an under-dispersed heterogeneity. 
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