Reprint

ISSN 1991-3036 (Web Version)

International Journal of Sustainable Crop Production (IJSCP)

(Int. J. Sustain. Crop Prod.)

Volume: 6

Issue: 2

August 2011

<u>Int. J. Sustain. Crop Prod. 6(2): 6-11 (August 2011)</u> SCREENING OF JUTE MUTANTS FOR SALINITY TOLERANCE M.T. ISLAM, M.B. BEGUM AND M.O. ISLAM

IJSCP** issn 1991-3036, HO:19-10 cantral place, saskatoon, saskatchewan, s7n 2s2, Canada

SCREENING OF JUTE MUTANTS FOR SALINITY TOLERANCE

M.T. ISLAM, M.B. BEGUM¹ AND M.O. ISLAM²

Crop Physiology Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, ¹Former M.S. Student, ²Professor, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh.

Corresponding author & address: Dr. Md. Tariqul Islam; Email: islamtariqul05@yahoo.com Accepted for publication on 7 August 2011

ABSTRACT

Islam MT, Begum MB, Islam MO (2011) Screening of jute mutants for salinity tolerance. Int. J. Sustain. Crop prod. 6(2), 6-11.

A pot culture experiment was conducted at the pot yard of Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh during the period from February to May 2007 to screen jute mutants at different levels of salinity. The experiment was laid out in complete randomized design with three replications. In germination test, 20 jute genotypes were treated with 8, 6 dSm⁻¹ and control where no salt was applied. Among these genotypes, only five were germinated at 6 dSm⁻¹ salinity level. These five selected jute mutants *viz.* 0-9897 400 Gy P-26(1), 0-9897 500 Gy P-58(2), 0-9897 500 Gy P-65(3), 0-9897 900 Gy P-72(1), 0-9897 900 Gy P-86(3) were then treated with control, 4, 6 dSm⁻¹ salinity levels for growth and yield studies. The results revealed that plant height both at 85 DAS and maturity stage, number of leaves, leaf area, dry weight of roots, stem and leaves, total dry matter plant⁻¹ at 85 DAS, base diameter, fibre and stick yields at maturity were gradually decreased with the increase in salinity levels. The highest plant height was recorded in 0-9897 900 Gy P-86(3) and 0-9897 500 Gy P-65(3). The mutant 0-9897 400 Gy P-26(1) produced the maximum number of leaves, dry weight of stem, leaves, total dry matter, fibre yield and stick yields. The maximum leaf areas, dry weight of roots were produced by 0-9897 500 Gy P-65(3). Under the inducing salinity condition 0-9897 400 Gy P-26(1), 0-9897 500 Gy P-65(3) and 0-9897 900 Gy P-86(3) performed better than other mutants with respect of morphological and yield attributing characters.

Key words: jute mutants, germination, salt tolerance, dry matter and fibre yield

INTRODUCTION

Jute is an important cash and fibre crop which belongs to the family Tiliaceae and genus *Corchorus*. Two cultivated species of jute were *Corchorus capsularis* (Deshi jute) and *Corchorus olitorius* (Tossa jute). The commercial product of the fibre derived from these two species of genus *Corchorus*, among 40 species distributed throughout the tropics (Alim 1978). Jute is the second important fibre crop of the world (Saha 1996) and it is generally known as golden fibre of Bangladesh as it contributed as lion share to the economy. Jute fibre is used for making gunny bags, sacking, carpet backing cloths, mats blankets, furnishing fabrics and packing materials as an alternative to polyethyline bags. It is also used as micro-crystal cellulose in pharmaceutical laboratories and jute Zeo-Textice for the constructions.

Salinity is one of the major widespread environmental stresses that can limit growth and development of salt sensitive plant (Greenway and Munns, 1980). The salinity developed in soil adversely affects the growth and yield of different crop plants. Morphological characters namely plant height, total tillers, root, shoot, panicle length, grain weight panicle⁻¹, grain size and quality and quantity of grains decrease progressively with increase in salinity level (Abdullah et al. 2001). Seed germination is affected by the increase in salinity (Purhpan and Rangasamy, 2002). Crop plants show reduction in dry matter accumulation and grain yield under salt stress which is invariably accompanied with pronounced changes in their ionic composition. The salinity damage manifests most prominently in the dry season when is caused by evaporation. There adverse physiological effects of salinity may be attributed to non availability of water (Singh et al. 2001), reduction in photosynthesis through loss of turgidity (Gufran 1994), impeded nutrient uptake causing deficiency and ion toxicity to plant (Varshney et al. 1998). Selective uptake of non-toxic ions into the vascular saps and compartmentalization of toxic ions into the older plant parts is considered to be important basis of tolerance to salinity. Over $4/5^{th}$ of the surface of our earth is covered with a salt solution containing among many other constituents approximately 0.5M NaCl (Abrol 1986). Millions of hectares of land throughout the world are too saline to produce economic crops and more land becoming nonproductive each year because of salt accumulation. Common salts like carbonates, bicarbonates, and sulphates of Na, K, Ca, and Mg are the major problems in saline soil (Waisel 1972). Islam (2005) evaluated jute mutants CM-107, P-26(5), CM-61, CM-67, CM-652, BINA deshi pat-2, CM-443 and P-81(2) under at three salinity levels viz control, 3 and 6 dSm⁻¹ salinity levels and observed that plant height, number of leaves, leaf area, root, stem, and leaf dry weight, total dry matter decreased with the increase in salinity levels compared to control. The mutants of CM-443 and P-26(5) were proved to be moderately salt tolerant. In Bangladesh about 2.8 million hectares constitute coastal and offshore areas (Karim et al. 1982). There areas are affected by different degrees of salinity (Karim *et al.* 1990). For increasing jute production it is urgently needed to extent cultivation of jute to all possible areas of Bangladesh. But the cultivation of jute crop in that area is not easy because of the lack of salinity tolerant varieties. In order to develop saline tolerant variety of jute proper morphological and yield attributes of salt tolerance must be assessed.

Considering those points, the present work was undertaken to study the salt tolerance level of jute mutants. The characters of mutants associated to the salt tolerance of different levels are investigated. The objectives of the

Islam et al.

work were to assess the effect of salinity on morphological and yield attributes of jute mutants; and to find out salt tolerant jute mutants, if any.

MATERIALS AND METHODS

A pot experiment was conducted at the pot yard of Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh during February to May, 2007 to investigate the effect of salinity on growth and yield of jute mutants. Two tests were conducted in this experiment; one of them was germination test which had control, 6, 8 dSm⁻¹ salinity level and 20 jute genotypes. Another for growth and yield studies which had control, 4, 6 dSm⁻¹ salinity levels with 5 selected mutants from germination test. The above mentioned five mutants of jute (*Corchorus oletorius* L.) were O-9897 400 Gy P-26(1), O-9897 500 Gy P-58(2), O-9897 500 Gy P-65(3), O-9897 900 Gy P-72(1) and O-9897 900 Gy P-86(3). Both the tests were laid out in a complete randomized design with three replications. The seeds were sown directly in the pots containing 8 kg of soils (Silty loam, organic matter 1.05%, total N 0.07%, available P 14.3 ppm, exchangeable K 0.25 meq.per 100g soil, available S 13.2 and soil pH 6.67). Recommended doses of fertilizers were applied and other cultural practices were followed as and when required. Data were recorded on plant height, number of leaves plant⁻¹, leaf area plant⁻¹, dry weight of roots, stem, leaves, total dry matter plant⁻¹, base diameter, fibre and stick yield.

RESULTS AND DISCUSSION

The percentage of germination, plant height, number of leaves plant⁻¹, leaf area, dry weight of roots, stem and leaves and total dry matter decreased with increasing salinity levels compared to those at control. Yield and yield contributing attributes like plant height, fibre and stick yield were also decreased with increasing salinity compared to the control. At both stages (at 85 DAS and mature stage) the highest plant height was recorded in O-9897 900 Gy P- 86 (3), 0-9897 500 Gy P-65(3) and the lowest in mutant O-9897 500 Gy P-58(2), moderate in O-9897 400 Gy P-26(1). O-9897 400 Gy P-26(1) produced the maximum number of leaves plant¹, dry weight of stem, leaves, total dry matter, fibre and stick yield. O-9897 500 Gy P-65(3) produced the maximum leaf area, dry weight of roots and moderate performance in number of leaves plant⁻¹, leaf weight, total dry matter plant⁻¹ fibre and stick yield. O-9897 500 Gy P-72(1) showed the lowest number of leaves, leaf area, leaf dry weight, total dry matter and fibre yield. The lowest plant height, dry weight of roots, stem and stick yield were recorded in O-9897 500 Gy P-58(2). Interaction effects of salinity levels and jute mutants on all the studied parameters were significant. Declined percentage of germination was in conformity with the result of Nasreen et al. (2002). Khandker and Alim (2004) reported that plant height of jute mutants was decreased with the increase in salinity levels. The gradual decrease in plant height might be due to inhibition of cell division or cell enlargement under salinity stress. Similar results were also obtained by Oliveira et al. (1998); Murillo and Tryo (2000). Islam et al. (2006) reported that number of leaves plant⁻¹ and root dry weight in jute were reduced by salinity. Reduced leaf area under salinity was obtained by Chakrabarti and Mukherjii (2002). Singh et al. (2001) recorded lower stem dry weight under salinity. Decreased stem dry weight under salinity stress might be due to the inhibition of hydrolysis of reserve food or its translocation to the growing axis. Leaf dry weight depends on leaf size. Decreased leaf dry weight might be due to inhibition of photosynthesis under salinity stress. The decrease in total dry matter accumulation due to salinity might be the result of poorly developed root, stem and leaf and decrease in other metabolites. The findings of Islam et al. (2006) were in consistence with the present findings. They reported that dry matter production reduced with the increasing salinity. The variation among different mutants might be due to different genetic make up of the mutants.

Sl. No.	Constants	Germinat	Germination percentage			
	Genotypes	Control (0.42 dSm ⁻¹)	6 dSm ⁻¹	8 dSm ⁻¹		
1	O-9897 Control	66	0	0		
2	O-9897 400 Gy P -15 (2)	88	0	0		
3	O-9897 400 Gy P -18 (3)	88	0	0		
4	O-9897 400 Gy P -25 (1)	88	0	0		
5	O-9897 400 Gy P -25 (2)	88	0	0		
6	O-9897 400 Gy P -25 (3)	77	0	0		
7	O-9897 400 Gy P -26 (1)	88	44	0		
8	O-9897 500 Gy P -58 (2)	100	44	0		
9	O-9897 500 Gy P -65 (2)	77	0	0		
10	O-9897 500 Gy P-65 (3)	88	33	0		
11	O-9897 500 Gy P -188 (1)	88	0	0		
12	O-9897 800 Gy P -200 (2)	100	0	0		
13	O-9897 800 Gy P -200 (3)	88	0	0		
14	O-9897 900 Gy P -72 (1)	100	22	0		
15	O-9897 900 Gy P -72 (2)	77	0	0		
16	O-9897 900 Gy P -86 (1)	77	0	0		
17	O-9897 900 Gy P -86 (3)	88	33	0		
18	O-9897 900 Gy P -198 (1)	77	0	0		
19	O-9897 900 Gy P -198 (2)	100	0	0		
20	O-9897 900 Gy P -198 (3)	100	0	0		

Table 1. Germination percentage of jute genotypes under different salinity levels

Table 2. Effect of salinity	on plant height,	number of leaves	and leaf area of jute mutants

Treatments	Plant height (cm) at 85 DAS	Plant height (cm) at maturity	Number of leaves plant ⁻¹ at 85 DAS	Leaf area (cm ²) plant ⁻¹ at 85 DAS
Salinity level				
Control (0.42 dSm^{-1})	135.67a	269a	27.53ab	1194 a
$4 \mathrm{dSm}^{-1}$	106.07b	226b	22.67b	879b
$6 \mathrm{dSm}^{-1}$	91.73c	202c	19.00c	655c
LSD _{0.05}	3.25	5.971	1.15	58
Mutants				
O-9897 400 Gy P-26(1)	116.00b	241b	25.11a	995a
O-9897 500 Gy P-58(2)	96.67d	211c	22.56b	875b
O-9897 500 Gy P-65(3)	117.44ab	252a	23.89ab	1014a
O-9897 900 Gy P-72(1)	104.89c	211c	20.56c	718c
O-9897 900 Gy P-86(3)	120.78a	247ab	23.22b	944ab

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

Table 3. Interaction effects between salinity and mutants on plant height, number of leaves and leaf area of jute mutants

Mutants	Salinity (dSm ⁻¹)	Plant height (cm) at 85 DAS	Plant height (cm)	Number of leaves plant ⁻¹	Leaf area (cm ²) plant ⁻¹ at 85 DAS
		(cm) at 65 DAS	at maturity	at 85 DAS	plant at 05 DAS
	Control (0.42)	131.00c	264b	27.67ab	1420a
O-9897 400 Gy P-26(1)	4	109.00ef	240c	22.67d	762d
	6	108.00cf	221d	25.00bcd	804d
	Control (0.42)	117.67d	263b	26.67ab	980c
O-9897 500 Gy P-58(2)	4	97.00gh	197e	23.33cd	892cd
	6	75.33i	172f	17.67ef	753d
	Control (0.42)	143.00ab	264b	29.00a	1214b
O-9897 500 Gy P-65(3)	4	115.33de	270b	25.67bc	1004c
	6	94.00h	222d	17.00ef	824d
	Control (0.42)	149.67a	289a	26.67ab	1206b
O-9897 900 Gy P-72(1)	4	105.00f	197f	19.00e	573e
	6	60.00i	166f	16.00f	374f
	Control (0.42)	137.00bc	267b	27.67ab	1149b
O-9897 900 Gy P-86(3)	4	104.00fg	242c	22.67d	1165b
	6	121.33d	232cd	19.33e	517e

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

Islam et al.

Treatment	Root dry wt. (g)	Stem dry wt. (g)	Leaf dry wt. (g)	Total dry matter plant ⁻¹ (g)
Salinity level				
Control (0.42 dSm ⁻¹)	3.76a	16.69a	5.13a	25.64a
$4 \mathrm{dSm}^{-1}$	2.48b	14.41b	3.79b	20.63b
6 dSm ⁻¹	2.57b	13.02c	2.92c	18.69c
LSD _{0.05}	0.3260	0.9538	0.4707	1.193
Mutants				
0-9897 400 Gy p-26(1)	3.07ab	17.41a	4.66a	25.14a
0-9897 500 Gy p-58(2)	2.64b	12.94d	3.58bc	18.95d
0-9897 500 Gy p-65(3)	3.38a	14.33bc	4.23a	22.03b
0-9897 900 Gy p-72(1)	2.89b	13.96c	3.12c	20.08c
0-9897 900 Gy p-86(3)	2.70b	15.33b	4.13ab	22.07b

Table 4. Effect of salinity on root, stem	, leaf dry weight and total dr	y matter plant ⁻¹ of jute mutants at 85 DAS

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

Table 5. Interaction effects between salinity and mutants on root, stem, leaf dry weight and total dry matter plant⁻¹ of jute mutants at 85 DAS

Mutants	Salinity (dSm ⁻¹)	Root dry	Stem dry	Leaf dry	Total dry matter
		wt. (g)	wt. (g)	wt. (g)	plant ⁻¹ (g)
	Control (0.42)	3.75b	19.22a	6.65a	29.62a
0-9897 400 Gy p-26(1)	4	2.52d-g	17.50ab	3.57d	23.59d
	6	2.94b-e	15.50bcd	3.77cd	22.21de
	Control (0.42)	3.46bc	14.40def	4.66bcd	22.53de
0-9897 500 Gy p-58(2)	4	2.04fg	12.267fg	4.25bcd	18.55gh
	6	2.43d-g	10.81g	1.84e	15.76i
	Control (0.42)	3.547bc	16.96abc	4.92bc	25.72bc
0-9897 500 Gy p-65(3)	4	3.17bcd	13.65def	4.28bcd	21.09ef
	6	3.42bc	12.37fg	3.49d	19.29fg
	Control (0.42)	4.90a	14.15def	5.00b	24.12cd
0-9897 900 Gy p-72(1)	4	1.85g	15.00cde	2.80e	19.23fg
	6	1.92g	12.74efg	1.97e	16.88hi
	Control (0.42)	3.12bcd	18.69a	4.39bcd	26.20b
0-9897 900 Gy p-86(3)	4	2.84c-f	13.65def	4.45bcd	20.70ef
	6	2.15efg	13.65def	3.54d	19.31fg

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

Table 6. Yield and yield attributes of jute mutants under different salinity levels

Treatment	Base diameter (cm)	Fibre yield plant ⁻¹ (g)	Stick yield plant ⁻¹ (g)	
Salinity level				
Control (0.42 dSm-1)	1.80a	17.57a	46.93a	
4dSm-1	1.61b	9.64b	28.49b	
6dSm-1	1.46c	6.47c	21.12c	
LSD0.05	.1109	1.279	2.423	
Mutants				
0-9897 400 Gy p-26(1)	1.68	12.49a	37.32a	
0-9897 500 Gy p-58(2)	1.54	9.66b	26.00c	
0-9897 500 Gy p-65(3)	1.67	12.47a	31.99b	
0-9897 900 Gy p-72(1)	1.57	9.48b	30.04b	
0-9897 900 Gy p-86(3)	1.64	12.06a	35.04a	

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

Mutants	Salinity (dSm ⁻¹)	Base diameter (cm)	Fibre yield plant ⁻¹ (g)	Stick yield plant ⁻¹ (g)
	Control (0.42)	1.86ab	18.07a	54.91a
0-9897 400 Gy p-26(1)	4	1.66bcd	10.11cd	30.68e
	6	1.53cde	9.28de	26.38ef
	Control (0.42)	1.70a-d	14.33b	36.87cd
0-9897 500 Gy p-58(2)	4	1.60b-e	9.32de	26.91ef
	6	1.33ef	5.33f	14.24g
	Control (0.42)	1.76abc	18.44a	40.68c
0-9897 500 Gy p-65(3)	4	1.73abc	12.70bc	31.86de
	6	1.53cde	6.26ef	23.43f
	Control (0.42)	1.96a	17.83a	53.67ab
0-9897 900 Gy p-72(1)	4	1.63bcd	6.12f	22.49f
	6	1.13f	4.48f	13.95g
	Control (0.42)	1.70a-d	19.20a	48.51b
0-9897 900 Gy p-86(3)	4	1.43de	9.96cd	30.51e
	6	1.80abc	7.02def	27.64ef

Table 7. Interaction effect of salinity levels and jute mutants on yield and yield attributes

Values having common letter(s) in a column do not differ significantly at 5% level as per DMRT

CONCLUSION

The increase in soil salinity significantly reduced almost all the morphological attributes and yield of jute mutants. Considering the performance of jute mutants under salt stress, O-9897 400 Gy P-26(1), O-9897 500 Gy 65(3), and O-9897 900 Gy P-86(3), showed better performance than others.

REFERENCES

Abdullah Z, Khan MA, Flowers TZ (2001) Causes of sterility in seed set of rice under salinity stress. J. Agron. and Crop Sci., 167(1), 25-32.

Abrol I (1986) Salt affected soils; problem and prospects in developing countries. Central Soil Salinity Research Institute, Karal, Itaryana India, National Resources Environ., series (UK), 20, 283-305.

Alim A (1978) A Hand Book of Bangladesh Jute. Associated Printer Ltd., 311 Johnson Road, Dhaka. p. 10.

Chakrabarti N, Mukherjii S (2002) Growth regulator mediated changes in leaf area and metabolic activity in mungbean under salt stress condition. *Indian J. Plant Physiol.*, 7(3), 256-263.

Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol., 31, 149-190.

Gufran KM (1994) Effect of salt stress on nitrate reductage activity in some leguminous crops. *Indian J. Plant Physiol.*, 37, 185-187.

Islam MT, Islam MA, Karim MA (2006) Effect of salinity on morpho-physiological and biochemical attributes of jute genotypes at early vegetative stage. *Bangladesh J. Nuclear Agric.* 21 & 22, 17-25.

Islam R, Ahmad S, Rashid H (2005) Bangladesh Jute Research Institute, Dhaka, Bangladesh. Ann. Rep. 2005-2006. pp. 35-36.

Karim Z, Hussain SG, Ahmed M (1990) Salinity problems and crop intensification in the coastal regions of Bangladesh (BARC). p.1.

Karim Z, Saheed SM, Salahuddin ABM, Alam MK, Haque A (1982) Coastal saline soils and their management in Bangladesh; BARC Publication No. 8.

Khandker S, Alim AM (2004) Bangladesh Jute Research Institute, Dhaka, Bangladesh. Ann. Rep. 2005-2006. p. 50.

Murillo AB, Tryo DE (2000) Effect of salinity on germination and seedling characteristics of cowpea (*Vigna unguiculata* (L.) Walp). *Australian J. Expt. Agric.*, 40(3), 333-383.

Nasreen A, Begum S, Haque S (2002) Bangladesh Jute Research Institute, Dhaka, Bangladesh. Ann. Rep. 2001-2002. p. 78.

Oliveira FA, Compos TGS, Oliveira BC, Olivira FA, Compos TGS (1998) Effect of saline subtract on germination vigor and growth of herbaceous cotton. Egnenhasia Agricola. 18(2), 1-10.

Islam et al.

Purhpan R, Rangasamy SRS (2002) In vivo response of rice cultivars to salt strees. J. Ecobiology. 14(3), 177-182.

Saha (1996) Effect of intercropping mustard, corriander, red amaranth and radish with late jute seed rate. MS Thesis, Dept. Agron., Bangladesh Agril. Univ., Mymensingh.

Singh RA, Roy NK, Hoque MS (2001) Changes in growth and metabolic activity in seedlings of lentil (*Lens culinaris Medie*) genotypes during salt stress. *Indian J. Plant Physiol.*, 6, 406-410.

Varshney KA, Sanwal N, Agarwl N (1998) Salinity induced changes in ion uptake and chemical composition in chickpea (*Cicer arietinum* L.). *Indian J. Plant Physiol.*, 3, 140-142.

Waisel Y (1972) Biology of Halophytes. Aca. Press, New York. 11, 1-14.