PERFORMANCE OF DIFFERENT MANAGEMENT PRACTICES ON LENTIL IN DRYLAND AREAS

M.O.ALI¹, M.A.ISLAM², M.S.ALAM³, M.J.ALAM² AND M.M.HOSSAIN²

¹Principal Scientific Officer, ²Scientific Officer, ³Senior Scientific Officer, Pulses Research Centre, Ishurdi, Pabna, Bangladesh

Accepted for publication: September 23, 2007

ABSTRACT

Ali, M.O., Islam, M.A., Alam, M.S., Alam, M.J. and Hossain, M.M.2007. Performance of Different Management Practices on Lentil in Dryland Areas. J. Soil .Nature .1(3): 20-23

A field experiment was conducted at Pulses Research Centre, Ishurdi, Pabna during rabi seasons of 2005-06 and 2006-2007 to find out the effect of different management practices on lentil cultivation for higher and economically viable yield. There were ten treatment combinations, such as control(T₁), non-priming with recommended fertilizer dose (RFD) @ 20-40-20 kg/ha of N-P₂O₅-K₂O during final land preparation (T₂), seed priming over night with RFD (T₃), fertilizer application @ 20-60-20 Kg/ha of N-P₂O₅-K₂O (T₄), pre-sowing irrigation with RFD (T₅), RFD + post sowing irrigation (T₆), RFD + irrigation at 25 DAE (T₇), RFD + irrigation at 25 days after emergence (DAE) + urea top dressed @ 20 kg/ha of N (T₈), fertilizer P₂O₅ application @ 40 kg/ha within line (T₉) and seed priming overnight + broadcast with RFD (T₁₀) were included in the study. Among the ten treatments, T₈ produced the highest grain yield (2152 Kg/ha) in 2005-06. In 2006-07 the highest grain yield (2350 Kg/ha) was also obtained by T₈ which was identical to that of T₅, T₆ and T₇ but the lowest grain yield (1283 Kg/ha and 1522 Kg/ha) was obtained by control in 2005-06 and 2006-07, respectively. Through the combined analysis, pooled results showed that same treatments i.e. T₈ produced the highest grain yield (2251.0 Kg/ha) which was identical to T₇. From the economic analysis, it was observed that the highest net return (TK 66804 and Tk 72950/ha) and the highest benefit cost ratio (4.47 and 4.46) were obtained by the treatment T₈ in 2005-06 and 2006-07, respectively.

Key word: Management practices, dry land, grain yield.

INTRODUCTION

Lentil (Lens culinaris Medik) is the early domesticated among crops. It plays an important role in human, animal and soil health improvement. It's seed is a rich source of protein, minerals (K.P. Fe, Zn) and vitamins for human nutrition (Bhatty 1988; Savage 1988), and the straw is a valued animal feed (Erskine et al. 1990). Being legume, lentil is restorative in nature and its seed contains average 25.78% protein (Erskine and Witcombe, 1984) and 59% carbohydrate (Bakhsh et al., 1991). Further more, because of its high lysine and tryptophan content, it's consumption with wheat or rice provides a balance in essential amino acids for human nutrition. Its cultivation improves soil nitrogen, carbon and organic matter status, thus providing sustainable crop production systems. In Bangladesh, among pulses lentil is an important dietary component and major source of protein. Lentil ranks second in respect of area and production but for consumer's preference its ranks first among all the pulses in Bangladesh (BBS, 2006). Where as, the average yield of lentil in Bangladesh is low. The main causes of decline of lentil area due to cultivation of low yield potential indigenous varieties, poor management practices and crop competition with other crops (Malhotra and Erskine, 1991 and Shoaib, 1992). But Pulses Research Center, Ishurdi, Pabna has developed some high yielding varieties of lentil, but management packages are yet to be developed. In Bangladesh, pulse crops are generally grown without or less fertilizers, manures and irrigation application. Very little work has been done on this crop on fertilizer management which has a great effect on yield. Potash along with nitrogen and phosphate increased the grain yield of lentil (Islam et al., 1985). Timely sowing and lower dose of N-P₂O₅-K₂O (20-40-20 Kg/ha) increased the grain yield of lentil (Rahman et al., 1993). 20 kg/ha N application along with 60 Kg/ha P₂O₅ increased growth and yield of lentil (Verma and Kalra ,1981). Although lentil is generally grown without irrigation but in dry land areas it faces stress condition during germination to different growth stages. In the dry land areas, farmers sporadically use irrigation in lentil field and are getting more yield than conventional practice's. But there is no scientific document on water management in lentil cultivation in Bangladesh. One irrigation at 3-4 weeks of seedlings along with 40-60-40 Kg/ha of N-P₂O₅-K₂O is effective to achieve higher yield of lentil (Yusuf et al., 1977). Seed priming is one of the techniques which enhanced germination and subsequent crop growth and yield. Seed Priming (seed soaked over night) enhanced germination and crop growth, resulting higher yield of chickpea in Barind region (Musa et al.,2001). But there is no integrated management practices on lentil cultivation in dry land areas considering the above findings. So, this present study was designed to determine integrated management practices for economically viable yield of lentil in dry land areas.

MATERIALS AND METHODS

A field experiment was conducted during two consecutive rabi seasons of 2005-06 and 2006-2007 on Calcareous Grey Flood Plain soil of the Pulses Research Centre, Ishurdi, Pabna under rainfed condition. The soil

was sandy loam having pH 7.5, containing 1.2% organic matter,17 ppm N, 26 ppm P and 300 ppm K (Ali *et al.*, 2003).

There were 10 treatment combinations, such as control (T_1) , non-priming with recommended fertilizer dose (RFD) @ 20-40-20 kg/ha of N-P₂O₅-K₂Oduring final land preparation (T₂), seed priming over night with RFD (T₃), fertilizer application @ 20-60-20 Kg/ha of N-P₂O₅-K₂O(T₄), pre-sowing irrigation with RFD (T₅), RFD + post sowing irrigation (T_6), RFD + irrigation at 25 DAE (T_7), RFD + irrigation at 25 DAE + urea top dressed @ 20 kg/ha of N (T_8), fertilizer P_2O_5 application @ 40 kg/ha within line (T_9) and seed priming overnight + broadcast with RFD (T_{10}) were included in the study. The experiment was laid out in RCB design with three replications. The unit plot size was 3m x 4m. Soils were collected before sowing and after harvesting for NPK analysis. Soil moisture was recorded (17.9-18.10%) during seed sowing. The sowing date was 15 November 2005 and 11 November 2006. Fertilizers were used as per treatment. The variety BARI Masur-4 was used with seed rate of 30 kg/ha. The seeds were sown within line apart 25 cm and broadcast as per treatment .Intercultural operations and other operations were done as and when necessary. The crop was harvested on 13 March, 2006 and 12 March, 2007. Data on yield contributing characters were recorded from 10 randomly selected plants from each plot and grain yield (kg/ha) was recorded from whole plot at harvest. All types of variable production costs were recorded to find out the net return and benefit cost ratio. The recorded data were analyzed statistically and mean values were adjudged by Duncan's Multiple Range Test (Gomez and Gomez, 1984). Economic analysis was computed according to Ali et al. (2003).

RESULTS AND DISCUSSION

The results of two years and pooled of yield and yield contributing characters of lentil are presented in Table 1 and 2. It appears that incase of soil moisture, at sowing time there was no significant difference in both the years and even pooled results, but numerically the highest soil moisture (18.10 %) was found in T_6 and the lowest (17.90 %) was found in T₁, T₃ and T₈ in 2005-06 and in 2006-07 the highest (18.10 %) was found in T₁, T₅, T₇ and T_9 and the lowest (17.90%) was found in T_3 , T_6 and T_{10} and from the combined data of soil moisture at sowing time the highest (18.05 %) was observed from T₅, T₇ and T₉ and the lowest (17.90 %) was in T₃. Differences in plant population of lentil after germination had no significant effect among the treatments in both the years and also in combined results. But numerically the highest plant population (283/m², 285/m² and $284/m^2$) were obtained with T₅ and T₆ and the lowest ($278/m^2$, $280/m^2$ and $279/m^2$) from T₁ for 2005-06, 2006-07 and pooled result, respectively. The plant height was significantly influenced by the different management practices. The highest plant height (37.27cm, 43.0cm and 40.14cm) were obtained by T₈ which was identical to those with T₅, T₆ and T₇ in 2005-2006, 2006-07 and pooled result, respectively. But the lowest plant height (31.30 cm, 34.27cm and 32.79 cm) were obtained by control in 2005-06, 2006-07 and pooled result, respectively, where T_2 , T_4 , and T_9 were identical in 2006-07 and pooled result. In the 2nd year, crop growth was higher than that of 1st year, due to crop was received rain 30 mm during cropping season. In 2005-06, the branches/plant was significantly highest (3.70) in T₈ which was identical to those of T₃, T₅, T₆, T₇ and T₁₀. In 2006-07, the highest branches per plant (4.20) were also recorded in T_8 which was statistically similar to T_5 , T_6 and T_7 . But the lowest branches per plant (2.16 and 2.73) were obtained by control in 2005-06 and 2006-07, respectively, where T₂, T₄, and T₉ were identical in 2005-06 and T₂ and T₉ were identical in 2006-07. By the combined analysis, the pooled result of branches per plant showed that T_8 also produced the highest branches per plant (3.95) which was statistically similar to T₅, T₆, T₇ and T₁₀ and the lowest (2.45) was in control which was identical to T_2 and T_9 .

Significantly the highest number of pods per plant (68 and 80) were found in T_8 which was identical to T_5 , T_6 , and T_7 and the lowest (58 and 69) were recorded from T_1 in 2005-06, 2006-07, respectively, where T_2 , T_4 , and T_9 were identical in 2006-07 (Table 2). From the combined analysis, the highest pods/plant (74) were also recorded in T_8 which was similar to T_3 , T_5 , T_6 and T_7 , and the lowest pods per plant (63) also observed in T_1 which was identical to T_2 and T_9 . Differences in seeds per pod had no significant effect among the treatments in both the years and also combined result, but numerically the highest seeds/pod (1.81 and 1.90) were in T_8 and the lowest (1.77 and 1.83) were obtained by T_1 in 2005-06 and 2006-07, respectively. From the combined result, increased seeds/pod (1.86) was in T_8 and the lowest (1.80) was in control. The highest 1000-seeds weight (21.40 g) was found in T_8 which was identical to those from T_3 , T_5 , T_6 , T_7 and T_{10} , and the lowest (19.67 g) was identical to other all the treatments except T_1 (21.69 g) that was the lowest 1000 seeds weight. From the combined analysis of 1000-seeds weight, T_8 produced the highest (21.94 g) which was statistically similar to T_3 , T_5 , T_6 , T_7 and T_{10} , and the lowest (20.68 g) was found in T_1 . The highest grain yield (2152 kg/ha) was obtained by T_8 and the lowest grain yield (1283 kg/ha) was found in T_1 in 2005-06. In 2006-2007, the highest grain yield

(2350 kg/ha) was recorded from the same treatment which was identical to those of T_5 , T_6 and T_7 and the lowest grain yield (1522 kg/ha) was recorded from T_1 which was statistically similar to T_2 . From the combined result, it was observed that the highest grain yield (22510 kg/ha) was also obtained from T_8 which was identical to T_7 and the lowest grain yield (1402.5 kg/ha) was found in T_1 . The highest grain yield was obtained from T_8 might be due to the cumulative influence of significant increase of plant height, branches/plant, number of pods/plant, 1000-seeds weight (g) and numerical increase of plant population/m² and number of seeds/pod. Yusuf *et al.* (1977) reported that one irrigation at 3-4 weeks of seedlings along with 40-60-40 Kg/ha of NPK is effective to achieve higher yield of lentil. Verma and Kalra (1981) reported that 20 kg/ha N application along with 60 Kg/ha P₂O₅ increased growth and yield of lentil.

T ()	Soil moisture (%) at sowing time			Plant Population / m ²			Pl	ant height (ci	n)	Branches/plant		
	05- 06	06- 07	pooled	05- 06	06- 07	pooled	05-06	06-07	pooled	05-06	06-07	pooled
T_1	17.90	18.10	18.00	278	280	279	31.30 e	34.27 c	32.79 c	2.16 d	2.73 e	2.45 d
T_2	18.00	18.00	18.00	279	281	280	34.00 cd	35.47 c	34.74 c	2.70 cd	3.00 de	2.85 cd
T ₃	17.90	17.90	17.90	281	283	282	35.50 bc	39.83 b	37.67 b	3.20 a-c	3.70 c	3.45 b
T_4	18.00	18.00	18.00	280	282	281	34.20 cd	35.80 c	34.40 c	2.75 b-d	3.20 d	2.98 c
T ₅	18.00	18.10	18.05	283	285	284	36.00 ab	42.37 a	39.19 ab	3.30 a-c	4.20 a	3.75 ab
T ₆	18.10	17.90	18.00	283	285	284	36.50 ab	41.00 ab	38.75 ab	3.40 ab	4.10 ab	3.75 ab
T_7	18.00	18.10	18.05	280	282	281	36.80 ab	42.50 a	39.65 ab	3.50 a	4.10 ab	3.80 ab
T ₈	17.90	18.00	17.95	280	282	281	37.27 a	43.00 a	40.14 a	3.70 a	4.20 a	3.95 a
T ₉	18.00	18.10	18.05	279	281	280	34.00 cd	35.40 c	34.70 c	2.70 cd	3.00 de	2.85 cd
T ₁₀	18.00	17.90	17.95	282	284	283	35.50 bc	39.90 b	37.70 b	3.30 a-c	3.80 bc	3.55 ab
CV (%)	3.50	3.50	4.09	5.11	6.15	1.31	2.41	3.07	2.85	11.73	5.47	7.26

Table 1. Effect of different management practices on the ancillary characters of Lentil

Table 2. Effect of different management	practices on the	vield and	vield com	ponents of Lentil
		J	J	

Treatm	Pods/Plant			Seeds/Pod			1000-Seed Wt.(g)			Grain yield (kg/ha)		
-ent	05-06	06-07	Pooled	05- 06	06- 07	Pooled	05-06	06-07	Pooled	05-06	06-07	Pooled
T_1	58 d	69 d	63 d	1.77	1.83	1.80	19.67 e	21.69 b	20.68 e	1283 f	1522 f	1402.5 g
T_2	62 c	70 d	66 cd	1.79	1.87	1.83	21.10 c	22.22 a	21.66 cd	1549 e	1761 d-f	1655.0 f
T_3	65 b	77 b	71 ab	1.79	1.90	1.84	21.30 ab	22.44 a	21.87 ab	1689 с-е	2008 bc	1848.5с-е
T_4	64 bc	70 d	67 c	1.76	1.87	1.82	21.15 bc	22.23 a	21.69 cd	1655 de	1811 с-е	1733.0 d- f
T_5	66 ab	79 ab	73 a	1.75	1.90	1.83	21.30 ab	22.45 a	21.88 ab	1869 bc	2250 ab	2059.5 b
T_6	66 ab	79 ab	72 a	1.75	1.90	1.83	21.30 ab	22.44 a	21.87 ab	1822 b- d	2180 ab	2001.0 bc
T_7	66 ab	79 ab	72 a	1.78	1.90	1.84	21.30 ab	22.46 a	21.88 ab	1897 b	2260 ab	2078.5 ab
T_8	68 a	80 a	74 a	1.81	1.90	1.86	21.40 a	22.47 a	21.94 a	2152 a	2350 a	2251.0 a
T_9	62 c	71 d	66.5 cd	1.79	1.88	1.83	20.90 d	22.23 a	21.57 d	1555 e	1780 d-f	1667.5 ef
T_{10}	65 b	74 c	68.5 bc	1.80	1.87	1.84	21.30 ab	22.42 a	21.86 ab	1699 с-е	2091 b	1895 b-d
CV(%)	2.41	1.76	2.59	2.71	7.15	48.94	0.51	2.29	0.37	6.02	7.58	5.55

Economic performance of various treatments under study is presented in Table 3. The highest gross return of Tk. 86080/ha and Tk. 94000/ha were obtained from T_8 in 2005-06 and 2006-07, respectively. The lowest gross return of Tk. 51320/ha and Tk. 60880/ha were obtained from T_1 in 2005-06 and 2006-07, respectively. The highest net return of Tk. 66804/ha and Tk. 72950/ha the highest BCR (4.47 and 4.46) were obtained by the same treatment in 2005-06 and 2006-07, respectively. The lowest net return (Tk. 37285/ha and Tk. 44230/ha) were obtained by T_1 in 2005-06 and 2006-07, respectively but T_4 produced the lowest BCR 3.62 in both the season.

From the results of this study, it may be concluded that, combination of recommended fertilizer dose (20-40-20 Kg/ha of NPK), irrigation at 25 DAE and urea top dressed @ 20 kg/ha of N during irrigation is the optimum management practices for economically viable yield of lentil under Ishurdi condition.

Treatment	Grain yield(Kg/ha)		Cost of production (Tk/ha)		Gross (T	s return k/ha)	Net return (Tk/ha)		Benefit cost ratio (BCR)	
	05-06	06-07	05-06	06-07	05-06	06-07	05-06	06-07	05-06	06-07
T_1	1283	1522	14035	16650	51320	60880	37285	44230	3.66	3.65
T_2	1549	1761	16845	19150	61960	70440	45115	51290	3.68	3.67
T ₃	1689	2008	16150	19200	67560	80320	51410	61120	4.18	4.18
T_4	1655	1811	18277	20000	66200	72440	47923	52440	3.62	3.62
T_5	1869	2250	17278	20800	74760	90000	57482	69200	4.33	4.32
T ₆	1822	2180	17384	20800	72880	87200	55496	66400	4.19	4.19
T_7	1897	2260	17459	20800	75880	90400	58421	69600	4.35	4.34
T_8	2152	2350	19276	21050	86080	94000	66804	72950	4.47	4.46
T9	1555	1780	15969	18280	62200	71200	46231	53200	3.89	3.89
T ₁₀	1699	2091	15276	18800	67960	83640	52684	64840	4.45	4.44

Table 3. Effect of different management practices on the agro-economic performance of lentil cultivation

Price

Urea=6.00 Tk/kg, TSP=20.00 Tk/kg, MP=15.00 Tk/kg, Plough=750.00 Tk/plough/ha, Labour =100.00 Tk/ 8 hour/head, Lentil=40.00 Tk. /kg (non seed) & 50.00 TK. /kg (seed) and one irrigation 750.00 Tk/ha.

REFERENCES

Ali,M.O.,Rahman,M.A.,Islam,Q.M.S., Hossain.M.A. and Islam,M.N.2003. Effect of different management practices on yield and yield components of Lentil in Dry land areas under rainfed condition. Bangladesh J. Agril. Res. 28 (2): 237-243.

Bakhsh, A., Ghafor, A., Zubeir, M.and Iqbal, S.M. 1991.Genotpy interaction for grain yield in lentil. *Pakistan J. Agric. Res.* 12(2):102-105.

BBS. 2006. Statistical Year Book of Bangladesh, Statistics Division, ministry of Planning, GOB, Bangladesh.

Bhatty, R. S. 1988. Composition and quality of lentil (*Lens culinaris* Medik.): A review. Canadian Institute of Food Science and Technology Journal 21,144-160.

Erskine, W. and Witcombe, J.R.1984. Lentil germplasms catalog ICARDA, Aleppo, Syria, p-363.

Erskine, W., Rihawi, S. and Capper, B.S.1990. Variation in lentil straw quality. Animal Feed Science and Technology 28, 61-69.

Gomez, K.A. and Gomez. A. A.1984.Comparison between treatments means .*In.* Statistical Procedures for Agricultural Research. IRRI, Philippines.pp.187-223.

Islam, M.S., Altamash, S., Sarker, N. I. and Hossain, K. M.1985. Potassium responses in greenhouse and field studies in Bangladesh. In proceedings of the International Symposium of Potassium in Agricultural Soils, Bangladesh Agricultural Research Council, Dhaka, Bangladesh. pp. 70-89.

Malhotra, R. S. and Erskine, W. 1991. Breeding of lentil for high yield, stability adaption. Page 235. In Advances in Pulses Research in Bangladesh. Proceedings of the Second National Workshop on Pulses, 6-8 June 1989, Joydebpur, Bangladesh. International Crops Res. Institute for the Semi Arid Tropics, Patuncheru., A. P. 502-3024.India.

Musa, A.M., Harris, D., Johansen, C. and Kumar, J. 2001. Short Duration Chickpea to Replace Fallow after Aman rice: The Role of on farm seed priming in the High Barind Tract of Bangldesh. Expl Agric.V. 37 . Pp.509-521

Rahman, M. M., Miah, A.A.and Murshed, A. N. M. M.1993. Effect of different management practices on the performance of lentil. Annual Research Report on pulses Agronomy, PRC, BARI, Joydebpur, Gazipur. p.11.

Savage, G.P.1988. The Composition and nutritive value of lentils (*Lens culinaris*). Nutrition Abstracts and Reviews (Series A) 58, 319-343.

Shoaib, Y. O. 1992. Effect of sowing date and seeding rate on lentil in Eastern Libya Newsletter, ICARDA, Syria.19 (2):21.

Verma, V.S. and Kalra, G. S.1981. Effect of Irrigation, Nitrogen and Phosphorus on Lentil. Indian J. Agron 26(3): 322-325.

Yusuf, M., Singh, N.P. and Dastane, N.G. 1977.Effect of Frequency and Timings of Irrigation on Grain yield and water use efficiency of Lentil. Annals of Arid Zone .18 (1 and 2): 127-134.